38 resultados para Structural phase transition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combinational loading-unloading rate effects were studied on the behavior of NiTi shape memory alloys (SMAs) under nanoindentation loads. While combinational loading rates showed negligible effects on the performance of NiTi SMAs, the combinational unloading rates did show significant effects on hysteresis energy. The heating-cooling phenomenon during the loading stage and the sole cooling during the unloading stage explain the effects. This study elucidates the nature of thermomechanical SMAs' behaviors during complex compressive loadings with the presence of solid-state phase transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Perovskite oxide offers an attractive alternative to precious metal electrocatalysts given its low cost and high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. The results obtained in this work suggest a correlation of crystal structure with ORR and OER activity for LaNiO3-?. LaNiO3-? perovskites with different crystal structure were obtained by heating at different temperatures, e.g., 400, 600, and 800 C followed by quenching into room temperature. Cubic structure (relative to rhombohedral) leads to higher ORR and OER activity as well as enhanced bi-functional electrocatalytic activity, e.g., lower difference in potential between the ORR at -3 mA cm-2 and OER at 5 mA cm -2 (?E). Therefore, this work shows the possibility to adjust bi-functional activity through a simple process. This correlation may also extend to other perovskite oxide systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A specific metal ion-responsive lipid liquid crystalline (LLC) dispersion system was fabricated, which can work in buffer solutions. The LLC matrix was prepared from phytantriol which spontaneously forms the reversed bicontinuous cubic phase in water, and a novel peptide-lipid conjugate (peplipid) consists of a myristate alkyl chain for anchoring into the phytantriol-based cubic bilayer and a peptide sequence for capturing a specific metal ion. The peplipid in its unbound state, when added into the phytantriol-based cubic system induces a positive effect on the bilayer curvature, resulting in the formation of the lamellar phase (vesicles) and the dispersion was transparent in appearance. Upon binding of the cadmium ion, the peplipid induces a negative effect on the lipid bilayer curvature and consequently leading to the formation of cubic phase and opaque appearance. In contrast, other metal ions, including buffering salts, could not sufficiently trigger the phase transition due to weak interaction with the peplipid. The high selectivity of metal ion interaction and triggered phase transition provide potential applications, such as in colloidal-mineral separation, triggered drug release and treatment of cadmium (II) pollution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell membrane changes its morphology during many physiological processes with the assistance of a solid support, such as the cytoskeleton, under an environmental stimulus. Here, a novel type of stimuli-responsive lipogel was fabricated, mimicking the changes of cell membrane. The lipogel was prepared from poly(N-isopropylacrylamide) (pNIPAM) microgel particle and phospholipid by a solvent-exchange method. The temperature dependent volume phase transition of pNIPAM triggers reversible transformation of the lipogel between a lipid vesicle-coated sun-like structure and a contracted hybrid sphere, through lipid merging and protrusion processes, respectively. By contrast, the salt induced pNIPAM phase transition leads to an irreversible vesicle release behaviour. The lipogel creates a unique platform for studying cell membrane behaviour and provides promising candidates in drug delivery and controlled release applications. © 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phthalocyanine (Pc) is a type of promising sensitizer molecules for photodynamic therapy (PDT), but its hydrophobicity substantially prevents its applications. In this study, we efficiently encapsulate Pc into poly(N-isopropylacrylamide) (pNIPAM) microgel particles, without or with lipid decoration (i.e., Pc@pNIPAM or Pc@pNIPAM/lipid), to improve its water solubility and prevent aggregation in aqueous medium. The incorporation of lipid molecules significantly enhances the Pc loading efficiency of pNIPAM. These Pc@pNIPAM and Pc@pNIPAM/lipid composite microspheres show thermo-triggered release of Pc and/or lipid due to the phase transition of pNIPAM. Furthermore, in the in vitro experiments, these composite particles work as drug carriers for the hydrophobic Pc to be internalized into HeLa cells. After internalization, the particles show efficient fluorescent imaging and PDT effect. Our work demonstrates promising candidates in promoting the use of hydrophobic drugs including photosensitizers in tumor therapies. © 2014 by the authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the first study of the characterisation of the organic ionic plastic crystal (OIPC) N-ethyl-N-methylpyrrolidinium tetrafluoroborate (C2mpyrBF4) upon mixing with a dendrimer additive. Whereas previous reports of OIPC composite formation (i.e. with ceramics and polymers) have typically reported a decrease in the conductivity when lithium salt had been added, the addition of dendrimer is shown to lead to a substantial enhancement in the lithium containing system, approaching 3 orders of magnitude at 30°C. Mechanical analysis indicates that dendrimer addition leads to a softer more ductile material while microscopy shows that the dendrimer is uniformly distributed and that the crystal microstructure is substantially disrupted, ultimately adopting a dendritic microstructure at 1mol% dendrimer content. Thermal analysis indicates a new phase in the lithium OIPC system, the crystallisation of which is suppressed in the presence of dendrimer. Instead, a decrease in the phase transition enthalpies indicates a large increase in the amorphous component of the Lithium OIPC, particularly for the most conductive system -C2mpyrBF4 +10mol% LiBF4 +0.1mol% dendrimer. Variable temperature powder X-ray diffraction confirms the presence of a new distinct phase and its absence in the presence of dendrimer. A change in the progression of the thermal phase behaviour of the OIPC in the presence of dendrimer is also shown, exhibiting the phase I (high temperature) structure at temperatures below the phase II-I transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wavy behaviours of hysteresis energy variation in nanoscale bulk of thermomechanical austenitic NiTi shape memory alloy are reported in ultimate nanoindentation loading cycles. One sharp and two spherical tips were used while two loading-unloading rates were applied. For comparison, another austenitic copper-based shape memory alloy, CuAlNi shape memory alloy, and a metal with no phase transition, elastoplastic Cu, were investigated. In shape memory alloys, the hysteresis energy variation ultimately undergoes a linear decrease with internal wavy fluctuations and no stabilisation was observed. The internal energy fluctuation in these alloys was found dissimilar depending on the loading-unloading rate and the indentation tip geometry. In contrast, there was an absence of both overall and internal variations in hysteresis energy for Cu after the second loading cycle. The underlying physics of these variations is discussed and found to be attributed to both the created dislocations and ratcheting thermal-mechanical behaviour of the phase-transformed volume in shape memory alloys.