37 resultados para Rice -- Biotechnology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray crystallography is essentially a form of very high resolution microscopy. It enables us to visualize protein structures at the atomic level and enhances our understanding of protein function. Specifically we can study how proteins interact with other molecules, how they undergo conformational changes, and how they perform catalysis in the case of enzymes. Armed with this information we can design novel drugs that target a particular protein, or rationally engineer an enzyme for a specific industrial process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the Vietnamese Household Living Standards Surveys of 2002, 2004, 2006, and 2008, this paper investigates the role of rice in poverty dynamics in the recent context of Vietnam. We find that sizeable changes in rice prices in the 2000s, which were driven largely by the country's integration into the world markets, have not helped rural households escape poverty, even for households with large-scale rice production. Our results also document that changes in rice output and productivity did not help mitigate poverty either. The paper provides evidence to explain why a substantial exogenous increase in the rice prices between 2006 and 2008 did not help rural households to move out of poverty, while similar changes did help in the 1990s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Rice is the primary source of food for billions of people in developing countries, yet the commonly consumed polished grain contains insufficient levels of the key micronutrients iron (Fe), zinc (Zn) and Vitamin A to meet daily dietary requirements. Experts estimate that a rice-based diet should contain 14.5 µg g−1 Fe in endosperm, the main constituent of polished grain, but breeding programs have failed to achieve even half of that value. Transgenic efforts to increase the Fe concentration of rice endosperm include expression of ferritin genes, nicotianamine synthase genes (NAS) or ferritin in conjunction with NAS genes, with results ranging from two-fold increases via single-gene approaches to six-fold increases via multi-gene approaches, yet no approach has reported 14.5 µg g−1 Fe in endosperm.

Methodology/Principal Findings
Three populations of rice were generated to constitutively overexpress OsNAS1, OsNAS2 or OsNAS3, respectively. Nicotianamine, Fe and Zn concentrations were significantly increased in unpolished grain of all three of the overexpression populations, relative to controls, with the highest concentrations in the OsNAS2 and OsNAS3 overexpression populations. Selected lines from each population had at least 10 µg g−1 Fe in polished grain and two OsNAS2 overexpression lines had 14 and 19 µg g−1 Fe in polished grain, representing up to four-fold increases in Fe concentration. Two-fold increases of Zn concentration were also observed in the OsNAS2 population. Synchrotron X-ray fluorescence spectroscopy demonstrated that OsNAS2 overexpression leads to significant enrichment of Fe and Zn in phosphorus-free regions of rice endosperm.

Conclusions
The OsNAS genes, particularly OsNAS2, show enormous potential for Fe and Zn biofortification of rice endosperm. The results demonstrate that rice cultivars overexpressing single rice OsNAS genes could provide a sustainable and genetically simple solution to Fe and Zn deficiency disorders affecting billions of people throughout the world.