60 resultados para MARKERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crayfish Geocharax gracilis is an important inhabitant of natural and agricultural drainage systems in south-eastern Australia. To investigate population structure, genetic diversity and patterns of connectivity in natural and human-altered ecosystems, we isolated and characterised 24 microsatellite loci using next generation sequencing. Loci were initially tested for levels of variation based on 12 individuals from across the species’ geographical range. A further 33 individuals from a single population were used to test for departures from Hardy–Weinberg equilibrium and linkage disequilibrium. We detected high to moderate levels of genetic variation across most loci with a mean allelic richness of 8.42 and observed heterozygosity of 0.629 (all samples combined). We found no evidence for linkage disequilibrium between any loci and only three loci (Geo01, Geo24 and Geo47) showed significant deviations from Hardy–Weinberg expectations. These same three loci, plus two additional loci (Geo06 and Geo28), also showed the presence of null alleles. These 24 variable markers will provide an important tool for future population genetic assessments in natural and human altered environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seagrasses are one of the most productive and economically important habitats in the coastal zone, but they are disappearing at an alarming rate, with more than half the world’s seagrass area lost since the 1990s. They now face serious threat from climate change, and there is much current speculation over whether they will survive the coming decades. The future of seagrasses depends on their ability to recover and adapt to environmental change—i.e. their ‘resilience’. Key to this, is understanding the role that genetic diversity plays in the resilience of this highly clonal group of species. To investigate population structure, genetic diversity, mating system (sexual versus asexual reproduction) and patterns of connectivity, we isolated and characterised 23 microsatellite loci using next generation sequencing for the Australian seagrass species, Zostera muelleri (syn. Z. capricorni), which is regarded as a globally significant congeneric species. Loci were tested for levels of variation based on eight individuals sampled from Lake Macquarie, New South Wales, Australia. We detected high to moderate levels of genetic variation across most loci with a mean allelic richness of 3.64 and unbiased expected hetrozygosity of 0.562. We found no evidence for linkage disequilibrium between any loci and only three loci (ZosNSW25, ZosNSW2, and ZosNSW47) showed significant deviations from Hardy–Weinberg expectations. All individuals displayed a unique multi-locus genotype and the combined probability of identity across all loci was low (P ID = 1.87 × 10−12) indicating a high level of power in detecting unique genotypes. These 23 markers will provide an important tool for future population genetic assessments in this important keystone species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background : There is an increased incidence of major depressive disorder (MDD) in individuals after myocardial infarction (MI), but the pathophysiological processes mediating this association are unclear. Our previous study demonstrated an increase in pro-apoptotic pathways in the myocardium and hippocampus in MDD, which was reversed by venlafaxine. This study aimed to attempt to confirm the effects of apoptosis vulnerability markers on the myocardium in a model of depression after myocardial infarction.

Methods :
Rats were divided into four groups: sham (N = 8), depression (N = 8, chronic mild unpredictable stress and separation were used in the depression group), MI (N = 13) and post-MI depression (N = 7). The rats in all four groups underwent the same open field and sucrose preference behavioral tests. Evan Blue staining was used to determine the area at risk of myocardial infarction in the left ventricle, and 2,3,5-triphenyl tetrazolium chloride (1.5% TTC) dye was used to detect the size of the myocardial infarction. The expression of bax and bcl-2 protein in the myocardium was investigated by immunohistochemistry, and the mRNA expression of bax, bcl-2 and caspase-3 in the myocardium was investigated by real time RT-PCR. Apoptosis was estimated in the myocardium by measuring the Bax:Bcl-2 ratio.

Results :
In the depression and post-MI depression rats, there were significantly decreased movements and total sucrose consumption, modeling behavioral deficits and an anhedonic-like state. In terms of myocardial infarction size, no difference was seen between the MI and post-MI depression groups. There was an up-regulated Bax:Bcl-2 ratio in the depression, MI and post-MI depression groups. Furthermore, in the latter group, there was a greater up-regulated Bax:Bcl-2 ratio. However, caspase-3 did not differ among the four groups.

Conclusions :
These results of this animal model suggest that active pro-apoptotic pathways may be involved in the nexus between myocardial infarction and depression. This mechanism may be germane to understanding this relationship in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified 15 polymorphic microsatellite loci for the barn owl (Tyto alba), five from testing published owl loci and 10 from testing non-owl loci, including loci known to be of high utility in passerines and shorebirds. All 15 loci were sequenced in barn owl, and new primer sets were designed for eight loci. The 15 polymorphic loci displayed two to 26 alleles in 56–58 barn owls. When tested in 10 other owl species (n = 1–6 individuals), between four and nine loci were polymorphic per species. These loci are suitable for studies of population structure and parentage in owls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that a subset of hepatocellular carcinomas (HCCs) are derived from liver cancer stem cells (LCSCs). In order to isolate and characterize LCSCs, reliable markers that are specific to these cells are required. We evaluated the efficacy of a range of cancer stem cell (CSC) markers in isolating and characterizing LCSCs. We show that the most widely used CSC markers are not specific to LCSCs. By western analysis, protein expression of the common markers showed no significant difference between HCC tumor tissues and adjacent non-cancerous liver. Further, isolation of LCSCs from common HCC cell lines using FACScan and microbeads showed no consistent marker expression pattern. We also show that LCSCs have unique subtypes. Immunohistochemistry of HCC tissues showed that different HCCs express unique combinations of LCSC markers. Quantitative real-time polymerase chain reaction analysis showed that LCSCs isolated using different markers in the same HCC phenotype had different expression profiles. Likewise, LCSCs isolated from different HCC phenotypes with the same marker also had unique expression profiles and displayed varying resistance profiles to Sorafenib. Thus, using a range of commonly used CSC markers in HCCs and cell lines, we demonstrate that currently available markers are not specific for LCSCs. LCSCs have unique subtypes that express distinctive combinations of LCSC markers and altered drug resistance profiles, making their identification problematic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.