91 resultados para Islet amyloid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. Typically, the disease progresses in a prolonged, inexorable manner [1]. Patients initially show symptoms of mild cognitive impairment, which may include some memory loss. As the disease progresses, more severe memory loss occurs (e.g., retrograde amnesia) leading to confusion and lack of orientation. The patient is often institutionalized in this period, as it becomes increasingly difficult for family members to cope with the constant requirements of care. In later stages of the disease, apathy and stupor can occur, and the patient becomes bedridden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common form of dementia in old age is Alzheimer’s disease (AD). The presence in the brain of senile plaque is the major pathological marker of AD. The plaques are primarily composed of aggregated amyloid-β peptide (Aβ). Aβ is a 40–42 amino acid peptide that is a proteolytic product derived from the β-amyloid precursor protein. The function of Aβ and the exact mechanism of Aβ aggregation and neurotoxicity are unclear. However, metal coordination by Aβ plays an important role in inducing aggregation and the generation of reactive oxygen species, which appears to be at least partially responsible for Aβ neurotoxicity. In this review we examine the role of copper and zinc ions in Aβ neurotoxicity, especially with regards to the generation of free radicals. We discuss the role of copper or zinc ions in oxidative damage and Aβ conformational changes and the relationship of these metals to AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a β-sheet conformation. One of the most abundant components in amyloid aggregates is the β-amyloid peptide 1–42 (Aβ 1–42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Aβ 1–42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Aβ 1–42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Aβ 1–42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Aβ 1–42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amyloid β peptide is toxic to neurons, and it is believed that this toxicity plays a central role in the progression of Alzheimer's disease. The mechanism of this toxicity is contentious. Here we report that an Aβ peptide with the sulfur atom of Met-35 oxidized to a sulfoxide (Met(O)Aβ) is toxic to neuronal cells, and this toxicity is attenuated by the metal chelator clioquinol and completely rescued by catalase implicating the same toxicity mechanism as reduced Aβ. However, unlike the unoxidized peptide, Met(O)Aβ is unable to penetrate lipid membranes to form ion channel-like structures, and β-sheet formation is inhibited, phenomena that are central to some theories for Aβ toxicity. Our results show that, like the unoxidized peptide, Met(O)Aβ will coordinate Cu2+ and reduce the oxidation state of the metal and still produce H2O2. We hypothesize that Met(O)Aβ production contributes to the elevation of soluble Aβ seen in the brain in Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular origin of the acetylcholinesterase (AChE) associated with amyloid plaques in the Alzheimer’s disease (AD) brain is unknown. In this study we report that amyloid β-peptides (Aβ) increased AChE levels in both neuronal and astrocytic primary cultures, supporting the possibility that both neurons and glia may make a direct contribution to the pool of AChE seen around amyloid deposits in the AD brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims For selected individuals with complex Type 1 diabetes, pancreatic islet transplantation (IT) offers the potential of excellent glycaemic controlwithout significant hypoglycaemia, balanced by the need for ongoing systemic immunosuppression. Increasingly, patient-reported outcomes (PROs) are considered alongside biomedical outcomes as a measure of transplant success. PROs in IT have not previously been compared directlywith the closest alternate treatment option, pancreas transplant alone (PTA) or pancreas after kidney (PAK).

Methods We used a Population, Intervention, Comparisons, Outcomes (PICO) strategy to search Scopus and screened 314 references for inclusion.

Results Twelve studies [including PRO assessment of PAK, PTA, islet-after kidney (IAK) and islet transplant alone (ITA); n = 7–205] used a total of nine specified and two unspecified PRO measures. Results were mixed but identified some benefits which remained apparent up to 36 months post-transplant, including improvements in fear of hypoglycaemia, as well as some aspects of diabetes-specific quality of life (QoL) and general health status. Negative outcomes included short-term pain associated with the procedure, immunosuppressant side effects and depressed mood associated with loss of graft function.

Conclusions The mixed resultsmay be attributable to limited sample sizes. Also, some PROmeasures may lack sensitivity to detect actual changes, as they exclude issues and domains of life likely to be important forQoL post-transplantation and when patients may no longer perceive themselves to have diabetes. Thus, the full impact of islet ⁄ pancreas transplantation (alone or after kidney) on QoL is unknown. Furthermore, no studies have assessed patient satisfaction, which may highlight further advantages and disadvantages of transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that the amyloid fibrilization of Aß16-22 follows a reverse hofmeister trend in pILs. Fast fibrilization rates of seconds can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of amyloid fibrils from non-disease-related proteins demonstrates that any protein can adopt this “rogue” form; we show that it is possible to use protic ionic liquids to fibrilize hen egg white lysozyme, and then subsequently to dissolve the fibrils with up to 72% restoration of enzymatic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Class I fungal hydrophobins form amphipathic monolayers composed of amyloid rodlets. This is a remarkable case of functional amyloid formation in that a hydrophobic:hydrophilic interface is required to trigger the self-assembly of the proteins. The mechanism of rodlet formation and the role of the interface in this process have not been well understood. Here, we have studied the effect of a range of additives, including ionic liquids, alcohols, and detergents, on rodlet formation by two class I hydrophobins, EAS and DewA. Although the conformation of the hydrophobins in these different solutions is not altered, we observe that the rate of rodlet formation is slowed as the surface tension of the solution is decreased, regardless of the nature of the additive. These results suggest that interface properties are of critical importance for the recruitment, alignment, and structural rearrangement of the amphipathic hydrophobin monomers. This work gives insight into the forces that drive macromolecular assembly of this unique family of proteins and allows us to propose a three-stage model for the interface-driven formation of rodlets.