213 resultados para Ionic liquid-functionalized silica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three cyclic vinyl based additives, based respectively on oxygen, sulphur and fluorine, are tested for their ability to improve the cycling of lithium in a hostile ionic liquid medium. Oxygen based vinylene carbonate is found to offer the best protection of the lithium metal whilst allowing very consistent lithium cycling to occur. The vinylene carbonate based system under study is, however, imperfect. Lithium metal is deposited in a dendritic morphology, and vinylene carbonate is rapidly consumed during lithium cycling if it is present in a small quantity. Our results suggest that ionic liquid systems critically relying on a small amount of additive to protect a lithium electrode are not viable for long cycle life secondary batteries. It is suggested that an ionic liquid which itself is lithium metal compatible be used instead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg−Zn−Rare Earth (RE)-Zr, nominal composition 4 wt % Zn, 1.7 wt % RE (Ce), 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P6,6,6,14][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of −200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquid electrolytes based on a number of imidazolium, quaternary ammonium and phosphonium cations have been developed for porphyrin dye sensitised solar cells yielding efficiencies of up to 5.2% at 0.68 Sun.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemical approach to the formation of a protective surface film on Mg alloys immersed in the ionic liquid (IL), trihexyl(tetradecyl)phosphonium–bis 2,4,4-trimethylpentylphosphinate, was investigated in this work. Initially, cyclic voltammetry was used with the Mg alloy being cycled from OCP to more anodic potentials. EIS data indicate that, under these circumstances, an optimum level of protection was achieved at intermediate potentials (e.g., 0 or 0.25 V versus Ag/AgCl). In the second part of this paper, a small constant bias was applied to the Mg alloy immersed in the IL for extended periods using a novel cell design. This electrochemical cell allowed us to monitor in situ surface film formation on the metal surface as well as the subsequent corrosion behaviour of the metal in a corrosive medium. This apparatus was used to investigate the evolution of the surface film on an AZ31 magnesium alloy under a potential bias (between ±100 mV versus open circuit) applied for over 24 h, and the film evolution was monitored using electrochemical impedance spectroscopy (EIS). A film resistance was determined from the EIS data and it was shown that this increased substantially during the first few hours (independent of the bias potential used) with a subsequent decrease upon longer exposure of the surface to the IL. Preliminary characterization of the film formed on the Mg alloy surface using ToF-SIMS indicates that a multilayer surface exists with a phosphorous rich outer layer and a native oxide/hydroxide film underlying this. The corrosion performance of a treated AZ31 specimen when exposed to 0.1 M NaCl aqueous solution showed considerable improvement, consistent with electrochemical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry of lithium is investigated in a number of electrolytes that consist of a lithium salt dissolved in a combined ionic liquid-organic diluent medium. We find that ethylene carbonate and vinylene carbonate improve electrochemical behaviour, while toluene and tetrahydrofuran are less promising.We also present insights into the electrode passivation caused by these diluents in an ionic liquid electrolyte during lithium cycling. We observe that during lithium cycling those electrolytes with carbonate based diluents are the most able to utilise their previously reported improved lithium ion diffusivities. Conversely, tetrahydrofuran, the most promising diluent of those studied in terms of its known ability to increase lithium ion diffusivity is found not to be as advantageous as a diluent. It appears that the poor electrochemical interfacial properties of the tetrahydrofuran electrolyte prevented the realisation of the benefits of the high solution lithium ion diffusivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of ionic liquid (IL) lubrication for aluminium/steel systems is highly dependant on the applied load and the IL structure. This study illustrates that a change in anion of an IL lubricant results in different physicochemical properties that will alter its performance at a given load. As the load is increased there is a shift in lubricant performance and mechanism of the IL. Up to a load of 30 N the lowest wear coefficient was achieved by a phosphonium diphenylphosphate IL, whilst above 30 N a phosphonium bis(trifluoromethanesulfonyl)amide IL was able to form a more tenacious tribolayer that resulted in the lowest wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, a novel chemical synthesis of polyaniline/gold nanocomposite is explored using ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate. The direct chemical synthesis of polyaniline/gold nanocomposite was initiated via the spontaneous oxidation of aniline by AuCl4 − in IL. A nearly uniform dispersion of polyaniline/Au particles with a diameter of 450 ± 80 nm was produced by this method, which indicates that this method is more suitable for controlling particle dimensions. It was also found that the electrical conductivity of the polyaniline/gold nanocomposite was more than 100 times higher than that of the pure polyaniline nanoparticles. The polyaniline/gold nanocomposite displays superior function in the biocatalytic activation of microperoxidase-11 because of the high surface area of the assembly and the enhanced charge transport properties of the composite material. We also report the possible application of polyaniline/gold nanocomposite as a H2O2 biosensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural wool/cellulose blends were prepared in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl) and the films were formed subsequently from the coagulated solutions. The wool/cellulose blend films show significant improvement in thermal stability compared to the coagulated wool and cellulose. Moreover, the blend films exhibited an increasing trend of tensile strength with increase in cellulose content in the blends which could be used for the development of wool-based materials with improved mechanical properties, and the elongations of the blends were considerably improved with respect to the coagulated films of wool and cellulose. It was found that there was hydrogen bonding interaction between hydroxyl groups of wool and cellulose in the coagulated wool/cellulose blends as determined by Fourier transform infrared (FTIR) spectroscopy. The ionic liquid was completely recycled with high yield and purity after the blend film was prepared. This work presents a green processing route for development of novel renewable blended materials from natural resource with improved properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recently synthesized ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf2], has been used for the extraction of copper(II) from aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu]+, which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of sparingly soluble water in [mimSBu][NTf2] also is required in solvent extraction studies to promote the incorporation of Cu(II) into the [mimSBu][NTf2] ionic liquid phase. The labile copper(II) system formed by interacting with both the water and the IL cation component has been characterized by cyclic voltammetry as well as UV−vis, Raman, and 1H, 13C, and 15N NMR spectroscopies. The extraction process does not require the addition of a complexing agent or pH control of the aqueous phase. [mimSBu][NTf2] can be recovered from the labile copper−water−IL interacting system by washing with a strong acid. High selectivity of copper(II) extraction is achieved relative to that of other divalent cobalt(II), iron(II), and nickel(II) transition-metal cations. The course of microextraction of Cu2+ from aqueous media into the [mimSBu][NTf2] IL phase was monitored in situ by cyclic voltammetry using a well-defined process in which specific interaction with copper is believed to switch from the ionic liquid cation component, [mimSBu], to the [NTf2] anion during the course of electrochemical reduction from Cu(II) to Cu(I). The microextraction−voltammetry technique provides a fast and convenient method to determine whether an IL is able to extract electroactive metal ions from an aqueous solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidative electrochemistry of [CpFe(CO)2]2, 1 (Cp = [η5-C5H5]–), was examined in detail in ionic liquids (ILs) composed of ions of widely varying Lewis acid−base properties. Cyclic voltammetric responses were strongly dependent on the nucleophilic properties of the IL anion, but all observations are consistent with the initial formation of 1+ followed by attack from the IL anion. In [NTf2]–-based ILs ([NTf2]– = bis(trifluoromethylsulfonyl)amide), the process shows nearly ideal chemical reversibility as the reaction between 1+ and [NTf2]– is very slow. This is highly significant, as 1+ is known to be highly susceptible to nucleophilic attack and its stability indicates a remarkable lack of coordinating ability of these ILs. In 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6], the oxidation of 1 is still largely reversible, but there is more pronounced evidence of [PF6]– coordination. In contrast, 1 exhibits an irreversible two-electron oxidation process in a dicyanamide-based IL. This overall oxidation process is thought to proceed via an ECE mechanism, details of which are presented. Rate constants were estimated by fitting the experimental data to digital simulations of the proposed mechanism. The use of [NTf2]–-based ILs as a supporting electrolyte in CH2Cl2 was examined by using this solvent/electrolyte as a medium in which to perform bulk electrolyses of 1 and 1*, the permethylated analogue [Cp*Fe(CO)2]2 (Cp* = [η5-C5(CH3)5]–). These cleanly yielded the corresponding binuclear radical-cation species, 1+ and 1*+, which were subsequently characterized by electron paramagnetic resonance (EPR) spectroscopy. In addition to the above oxidation studies, the reduction of 1 was studied in each of the ILs; differences in cathodic peak potentials are attributed, in part, to ion-pairing effects. This study illustrates the wide range of electrochemical environments available with ILs and demonstrates their utility for the investigation of the redox properties of metal carbonyls and other organometallic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of highly decorated bicyclo[2.2.1]heptadienes with the protic ionic liquid, TfOH:TEA effected quantitative conversion to the corresponding N-substituted 5-hydroxy-4-methyl-3-oxoisoindoline-1-carboxamides. This approach provides rapid access important chemical space for the rapid development of highly functionalised oxoisoindoline and is highly substrate tolerant.