40 resultados para Free radicals (Chemistry)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

(1R,2S,5R)-Menthyldiphenylgermane and its enantiomer have been prepared in a few steps from germanium tetrachloride. The initial step in this sequence, namely the reaction between germanium tetrachloride and menthylmagnesium chloride, produces menthylgermanium trichloride, which is the exclusive product of this Grignard reaction, presumably due to the bulk of the menthyl group. When used at a low temperature (−78 °C) and in conjunction with Lewis acids, such as magnesium salts, these chiral germanes are capable of reducing ester functionalized radicals in high enantioselectivity, but in low-moderate yield. For example, (R)-naproxen ethyl ester was obtained in 15% yield and 99% ee by reaction in toluene of 2-bromonaproxen ethyl ester with (1R,2S,5R)-menthyldiphenylgermane in toluene at −78 °C in the presence of magnesium bromide. At 80 °C, (1R,2S,5R)-menthyldiphenylgermane reacted with primary alkyl radicals with a rate constant of 1.02 × 106 M−1 s−1. Kinetic studies reveal the Arrhenius expression for this reaction to be: log(k/M−1 s−1) = (11.1 ± 0.4) − (34.6 ± 3.1)/θ where θ=2.3RT kJ mol−1.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi doping of SrFeO3d results in the formation of a structure with high symmetry and extraordinary electrochemical performance for Bi0.5Sr0.5FeO3-d, which is capable of competing effectively with the current Co-based cathode benchmark with additional advantages of lower thermal expansion and cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the synthesis, characterisation, and physical and tribological properties of halogen-free ionic liquids based on various chelated orthoborate anions with different phosphonium cations, both without halogen atoms in their structure. Important physical properties of the ILs including glass transition temperatures, density, viscosity and ionic conductivity were measured and are reported here. All of these new halogen-free orthoborate ionic liquids (hf-BILs) are hydrophobic and hydrolytically stable liquids at room temperature. As lubricants, these hf-BILs exhibit considerably better antiwear and friction reducing properties under boundary lubrication conditions for steel–aluminium contacts as compared with fully formulated (15W-50 grade) engine oil. Being halogen free these hf-BILs offer a more environmentally benign alternative to ILs being currently developed for lubricant applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five halogen-free orthoborate salts comprised of three different cations (cholinium, pyrrolidinium and imidazolium) and two orthoborate anions, bis(mandelato)borate and bis(salicylato)borate, were synthesised and characterised by DSC, X-ray diffraction and NMR. DSC measurements revealed that glass transition points of these orthoborate salts are in the temperature range from −18 to −2 °C. In addition, it was found that [EMPy][BScB] and [EMIm][BScB] salts have solid–solid phase transitions below their melting points, i.e. they exhibit typical features of plastic crystals. Salts of the bis(salicylato)borate anion [BScB]− have higher melting points compared with corresponding salts of the bis(mandelato)borate anion [BMB]−. Single crystal X-ray diffraction crystallography (for [Chol][BScB] crystals) and solid-state multinuclear (13C, 11B and 15N) NMR spectroscopy were employed for the structural characterisation of [Chol][BScB], [EMPy][BScB] and [EMIm][BScB], which are solids at room temperature: a strong interaction between [BScB]− anions and [Chol]+ cations was identified as (i) hydrogen bonding between OH of [Chol]+ and carbonyl groups of [BScB]− and (ii) as the inductive C–Hπ interaction. In the other salt, [EMIm][BScB], anions exhibit ππ stacking in combination with C–Hπ interactions with [EMIm]+ cations. These interactions were not identified in [EMPy][BScB] probably because of the lack of aromaticity in cations of the latter system. Our data on the formation of a lanthanum complex with bis(salicylato)borate in the liquid mixture of La3+(aq) with [Chol][BScB] suggest that this class of novel ILs can be potentially used in the extraction processes of metal ions of rare earth elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G′) became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the crystallization rates and spherulitic growth rate of miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were determined using differential scanning calorimetry (DSC), real-time FTIR, and optical microscopy. FTIR results suggest that blending does not induce the creation of polymorphic crystalline forms of PVDF. SAXS data demonstrate the formation of interlamellar structure after blending. The fold surface-free energy (σ e) was analyzed and compared using different thermal analysis techniques. The isothermal crystallization curves obtained using real-time FTIR and DSC explored in two different methods: t 1/2 or Avrami equation. While the Avrami equation is more widespread and precise, both analytical methods gave similar free energy of folding values. However, it was found that the direct optical method of measuring spherulitic growth rate yields σ e values 30-50 % lower than those obtained from the overall crystallization rate data. Conversely, the σ e values were found to increase with increasing amorphous ACM phase content regardless of the analytical methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible energy devices with high performance and long-term stability are highly promising for applications in portable electronics, but remain challenging to develop. As an electrode material for pseudo-supercapacitors, conducting polymers typically show higher energy storage ability over carbon materials and larger conductivity than transition-metal oxides. However, conducting polymer-based supercapacitors often have poor cycling stability, attributable to the structural rupture caused by the large volume contrast between doping and de-doping states, which has been the main obstacle to their practical applications. Herein, we report a simple method to prepare a flexible, binder-free, self-supported polypyrrole (PPy) supercapacitor electrode with high cycling stability through using novel, hollow PPy nanofibers with porous capsular walls as a film-forming material. The unique fiber structure and capsular walls provide the PPy film with enough free-space to adapt to volume variation during doping/de-doping, leading to super-high cycling stability (capacitance retention > 90% after 11000 charge-discharge cycles at a high current density of 10 A g-1) and high rate capability (capacitance retention ∼ 82.1% at a current density in the range of 0.25-10 A g-1).