42 resultados para CHELATED RUTHENIUM(II) COMPLEX


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined high-performance liquid chromatography (HPLC) separations using a monolithic column with acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection in a rapid and highly sensitive method to monitor the process of extracting opiate alkaloids from Papaver somniferum. Due to the high flow rates allowed with the monolithic column and the inherent selectivity of the chemiluminescence reactions, the four predominant alkaloids – morphine, codeine, oripavine and thebaine – were determined in less than 2 min. The results obtained with numerous process samples compared favourable with those of the standard HPLC methodology. Limits of detection were 1 × 10−10 M, 5 × 10−10 M, 5 × 10−10 M and 1 × 10−9 M, for morphine, codeine, oripavine and thebaine, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Article Outline
• Introduction
• Acidic Potassium Permanganate
• Acridinium Esters
• Diaryl Oxalates and Oxamides
• Dioxetanes
• Hypohalites
• Luminol and Its Analogs
• Tris(2,2′-bipyridyl)ruthenium(II)
• Practical Considerations
• HPLC and Flow Analysis
• Capillary Electrophoresis
• Enzyme Reaction Products
• Immunoassay and DNA Assays
• Further Reading


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review with 98 references. The determination of the opium poppy (Papaver somniferum) alkaloids and their semi-synthetic derivatives has important applications in industrial process monitoring, clinical analysis and forensic science. Liquid-phase chemiluminescence reagents such as tris(2,2′-bipyridyl)ruthenium(II) and acidic potassium permanganate exhibit remarkable sensitivity and complementary selectivity for many P. somniferum alkaloids, which has been exploited in the development of a range of analytical procedures using flow analysis, high-performance liquid chromatography, capillary electrophoresis and microfluidic instrumentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemiluminescence, the production of light from a chemical reaction, has found widespread use in analytical chemistry. Both tris (2, 2’-bipyridyl) ruthenium (II) and acidic potassium permanganate are chemiluminescence reagents that have been employed for the determination of a diverse range of analytes. This thesis encompasses some fundamental investigations into the chemistry and spectroscopy of these chemiluminescence reactions as well as extending the scope of their analytical applications. Specifically, a simple and robust capillary electrophoresis chemiluminescence detection system for the determination of codeine, O6-methylcodeine and thebaine is described, based upon the reaction of these analytes with chemically generated tris(2,2'-bipyridyl)ruthenium(III) prepared in sulfuric acid (0.05 M). The reagent solution was contained in a glass detection cell, which also held both the capillary and the cathode. The resultant chemiluminescence was monitored directly using a photomultiplier tube mounted flush against the base of the detection cell. The methodology, which incorporated a field amplification sample introduction procedure, realised detection limits (3a baseline noise) of 5 x 10~8 M for both codeine and O6-methylcodeine and 1 x 10~7 M for thebaine. The relative standard deviations of the migration times and the peak areas for the three analytes ranged from 2.2 % up to 2.5 % and 1.9 % up to 4.6 % respectively. Following minor instrumental modifications, morphine, oripavine and pseudomorphine were determined based upon their reaction with acidic potassium permanganate in the presence of sodium polyphosphate. To ensure no migration of the permanganate anion occurred, the anode was placed at the detector end whilst the electroosmotic flow was reversed by the addition of hexadimethrine bromide (0.001% m/v) to the electrolyte. The three analytes were separated counter to the electroosmotic flow via their interaction with a-cyclodextrin. The methodology realised detection limits (3 x S/N) of 2.5 x 10~7 M for both morphine and oripavine and 5 x 10~7 M for pseudomorphine. The relative standard deviations of the migration times and the peak heights for the three analytes ranged from 0.6 % up to 0.8 % and 1.5% up to 2.1 % respectively. Further improvements were made by incorporating a co-axial sheath flow detection cell. The methodology was validated by comparing the results realised using this technique with those obtained by high performance liquid chromatography (HPLC), for the determination of both morphine and oripavine in seven industrial process liquors. A complimentary capillary electrophoresis procedure with UV-absorption detection was also developed and applied to the determination of morphine, codeine, oripavine and thebaine in nine process liquors. The results were compared with those achieved using a standard HPLC method. Although over eighty papers have appeared in the literature on the analytical applications of acidic potassium permanganate chemiluminescence, little effort has been directed towards identifying the origin of the luminescence. It was found that chemiluminescence was generated during the manganese(III), manganese(IV) and manganese(VII) oxidations of sodium borohydride, sodium dithionite, sodium sulfite and hydrazine sulfate in acidic aqueous solution. From the corrected chemiluminescence spectra, the wavelengths of maximum emission were 689 ± 5 nm and 734 ± 5 nm when the reactions were performed in sodium hexametaphosphate and sodium dihydrogenorthophosphate or orthophosphoric acid environments respectively. The corrected phosphorescence spectrum of manganese(II) sulfate in a solution of sodium hexametaphosphate at 77 K, exhibited two peaks with maxima at 688 nm and 730 nm. The chemical and spectroscopic evidence presented strongly supported the postulation that the emission was an example of solution phase chemically induced phosphorescence of manganese(II). Thereby confirming earlier predictions that the chemiluminescence from acidic potassium permanganate reactions originated from an excited manganese(II) species. Additionally, these findings have had direct analytical application in that manganese(IV) was evaluated as a new reagent for chemiluminescence detection. The oxidations of twenty five organic and inorganic species, with solublised manganese(IV), were found to elicit analytically useful chemiluminescence with detection limits (3 x S/N) for Mn(II), Fe(II), morphine and codeine of 5 x 10-8 M, 2.5 x 10-7 M, 7.5 x 10-8 M and 5 x 10-8M, respectively. The corrected emission spectra from four different analytes gave wavelengths of maximum emission in the range from 733 nm up to 740 nm indicating that these chemiluminescence reactions also shared a common emitting species, excited manganese(II). Whilst several analytical problems were addressed in this thesis and answers to certain questions regarding the fundamentals of acidic potassium permanganate chemiluminescence were proposed, there are several areas that would benefit from further research. These are outlined in the final chapter of this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PHYTOCHROME AND FLOWERING TIME1 gene encoding the MEDIATOR25 (MED25) subunit of the eukaryotic Mediator complex is a positive regulator of jasmonate (JA)-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Based on the function of the Mediator complex as a bridge between DNA-bound transcriptional activators and the RNA polymerase II complex, MED25 has been hypothesized to function in association with transcriptional regulators of the JA pathway. However, it is currently not known mechanistically how MED25 functions to regulate JA-responsive gene expression. In this study, we show that MED25 physically interacts with several key transcriptional regulators of the JA signaling pathway, including the APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factors OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 and ERF1 as well as the master regulator MYC2. Physical interaction detected between MED25 and four group IX AP2/ERF transcription factors was shown to require the activator interaction domain of MED25 as well as the recently discovered Conserved Motif IX-1/EDLL transcription activation motif of MED25-interacting AP2/ERFs. Using transcriptional activation experiments, we also show that OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59- and ERF1-dependent activation of PLANT DEFENSIN1.2 as well as MYC2-dependent activation of VEGETATIVE STORAGE PROTEIN1 requires a functional MED25. In addition, MED25 is required for MYC2-dependent repression of pathogen defense genes. These results suggest an important role for MED25 as an integrative hub within the Mediator complex during the regulation of JA-associated gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research extends the investigations into the chemiluminescence and electrochemiluminescence of platinum group metal reagents and their applications. The effect of the chemical nature of tris(2,2'-bipyridyl)ruthenium(II) and selected analogues on the chemiluminescence reaction is further explored, and this chemistry is extended to include novel iridium(III) and osmium(II) based chemiluminescence reagents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploiting the distinct excitation and emission properties of concomitant electrochemiluminophores in conjunction with the inherent color selectivity of a conventional digital camera, we create a new strategy for multiplexed electrogenerated chemiluminescence detection, suitable for the development of low-cost, portable clinical diagnostic devices. Red, green and blue emitters can be efficiently resolved over the three-dimensional space of ECL intensity versus applied potential and emission wavelength. As the relative contribution ratio of each emitter to the photographic RGB channels is constant, the RGB ECL intensity versus applied-potential curves could be effectively isolated to a single emitter at each potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of a 'co-reactant' was a critical step in the evolution of electrogenerated chemiluminescence (ECL) from a laboratory curiosity to a widely utilised detection system. In conjunction with a suitable electrochemiluminophore, the co-reactant enables generation of both the oxidised and reduced precursors to the emitting species at a single electrode potential, under the aqueous conditions required for most analytical applications. The most commonly used co-reactant is tri-n-propylamine (TPrA), which was developed for the classic tris(2,2'-bipyridine)ruthenium(ii) ECL reagent. New electrochemiluminophores such as cyclometalated iridium(iii) complexes are also evaluated with this co-reactant. However, attaining the excited states in these systems can require much greater energy than that of tris(2,2'-bipyridine)ruthenium(ii), which has implications for the co-reactant reaction pathways. In this tutorial review, we describe a simple graphical approach to characterise the energetically feasible ECL pathways with TPrA, as a useful tool for the development of new ECL detection systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Figure. In two new complexes of Mn(II) and Zn(II), it has been observed that carboxylate (O)...π interactions played a crucial role in the organization of supramolecular structure and that carboxylate (O)...π interactions also somehow controlled by the C-H...π interactions, which is achieved by proper modulation of the linkers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unlike many other metal and metalloid ions, tin(II) elicits intense, analytically useful chemiluminescence upon reaction with tris(2,2΄-bipyridyl)ruthenium(III) in acidic aqueous solution. This finding provides new insight into the nature of this widely used reagent and has enabled the first direct, selective determination of a metal ion with tris(2,2΄-bipyridyl)ruthenium(III).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five halogen-free orthoborate salts comprised of three different cations (cholinium, pyrrolidinium and imidazolium) and two orthoborate anions, bis(mandelato)borate and bis(salicylato)borate, were synthesised and characterised by DSC, X-ray diffraction and NMR. DSC measurements revealed that glass transition points of these orthoborate salts are in the temperature range from −18 to −2 °C. In addition, it was found that [EMPy][BScB] and [EMIm][BScB] salts have solid–solid phase transitions below their melting points, i.e. they exhibit typical features of plastic crystals. Salts of the bis(salicylato)borate anion [BScB]− have higher melting points compared with corresponding salts of the bis(mandelato)borate anion [BMB]−. Single crystal X-ray diffraction crystallography (for [Chol][BScB] crystals) and solid-state multinuclear (13C, 11B and 15N) NMR spectroscopy were employed for the structural characterisation of [Chol][BScB], [EMPy][BScB] and [EMIm][BScB], which are solids at room temperature: a strong interaction between [BScB]− anions and [Chol]+ cations was identified as (i) hydrogen bonding between OH of [Chol]+ and carbonyl groups of [BScB]− and (ii) as the inductive C–Hπ interaction. In the other salt, [EMIm][BScB], anions exhibit ππ stacking in combination with C–Hπ interactions with [EMIm]+ cations. These interactions were not identified in [EMPy][BScB] probably because of the lack of aromaticity in cations of the latter system. Our data on the formation of a lanthanum complex with bis(salicylato)borate in the liquid mixture of La3+(aq) with [Chol][BScB] suggest that this class of novel ILs can be potentially used in the extraction processes of metal ions of rare earth elements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoredox catalysis with the use of a stable, reusable silica-bound chromophore was applied to the intramolecular cyclization of a series of 2-benzylidenehydrazinecarbothioamides to give 5-phenyl-1,3,4-thiadiazol-2-amines. The catalyst was readily prepared by carbodiimide-mediated coupling of commercially available amine-functionalized silica beads to a carboxylic acid functionalized ruthenium complex. The immobilized catalyst was readily removed from the reaction product by filtration and was used eight times without loss of catalytic activity. This simple, safe, and practical method is an attractive alternative to conventional procedures.