32 resultados para swimming crabs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although long-distance transport of marine organisms is constrained by numerous oceanic and biological factors, some species have evolved life-histories reliant on such movements. We examine the factors that promote long-distance transport in a transoceanic migrant, young loggerhead sea turtles (Caretta caretta), from the southeastern U.S. Empirical data from near-surface buoys and simulations in two ocean circulation models indicated that passive drifters are often retained for long periods shoreward of oceanic fronts that delineate coastal and offshore waters. Further simulations revealed that offshore swimming aided newly hatched turtles in moving past fronts and increased turtles’ probability of survival, reaching distant foraging grounds, and encountering favorable temperatures. Swimming was most beneficial in regions that were more favorable under scenarios assuming passive drift. These results have broad implications for understanding the movement processes of many marine species, highlighting likely retention of more planktonic species and potential for dispersal in more nektonic species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotion is one of the major energetic costs faced by animals and various strategies have evolved to reduce its cost. Birds use interspersed periods of flapping and gliding to reduce the mechanical requirements of level flight while undergoing cyclical changes in flight altitude, known as undulating flight. Here we equipped free-ranging marine vertebrates with accelerometers and demonstrate that gait patterns resembling undulating flight occur in four marine vertebrate species comprising sharks and pinnipeds. Both sharks and pinnipeds display intermittent gliding interspersed with powered locomotion. We suggest, that the convergent use of similar gait patterns by distinct groups of animals points to universal physical and physiological principles that operate beyond taxonomic limits and shape common solutions to increase energetic efficiency. Energetically expensive large-scale migrations performed by many vertebrates provide common selection pressure for efficient locomotion, with potential for the convergence of locomotory strategies by a wide variety of species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research suggests that repeated assays of behaviour, conducted both within and across situations, could reveal important insights into two traditionally distinct areas of study: animal personality and individual differences in behavioural plasticity. However, at present relatively few studies present such data, and few consider how changing abiotic conditions affect behavioural plasticity. Individual differences in metabolic rate have been suggested as a proximate mechanism promoting personality, leading one to speculate that individual differences in metabolic sensitivity to temperature may affect behavioural responses in ectotherms. At present, only one study (out of two) has tested for and shown individual differences in behavioural responses to temperature. Here, we repeatedly assayed the behaviour of a marine crab across a narrow range of temperatures to test for individual differences in responses to temperature. We observed large inter-individual differences in behaviour that were consistent over time at a given temperature (evidence for personality), and individual differences in responses to temperature (evidence for plasticity). This study adds to the very scant literature on ectotherm behavioural sensitivity to temperature, and suggests the phenomenon might be widespread. We speculate about the role of metabolism as a proximate mechanism that might explain these individual differences in plasticity and make suggestions for future research to test this hypothesis. © Koninklijke Brill NV, Leiden, The Netherlands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined insitu observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Current drift can have major and potentially negative effects on the lives of weakly swimming species in particular. Fossette etal. show that jellyfish modulate their swimming behavior in relation to current. Such oriented swimming has significant life-history benefits, such as increased bloom formation and a reduction of probability of stranding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of studying individual variation in locomotor performance has long been recognized as it may determine the ability of an organism to escape from predators, catch prey or disperse. In ectotherms, locomotor performance is highly influenced by ambient temperature (Ta), yet several studies have showed that individual differences are usually retained across a Ta gradient. Less is known, however, about individual differences in thermal sensitivity of performance, despite the fact that it could represent adaptive sources of phenotypic variation and/or additional substrate for selection to act upon. We quantified swimming and jumping performance in 18 wild-caught tropical clawed frogs (Xenopus tropicalis) across a Ta gradient. Maximum swimming velocity and acceleration were not repeatable and individuals did not differ in how their swimming performance varied across Ta. By contrast, time and distance jumped until exhaustion were repeatable across the Ta gradient, indicating that individuals that perform best at a given Ta also perform best at another Ta. Moreover, thermal sensitivity of jumping endurance significantly differed among individuals, with individuals of high performance at low Ta displaying the highest sensitivity to Ta. Individual differences in terrestrial performance increased with decreasing Ta, which is opposite to results obtained in lizards at the inter-specific and among-individual levels. To verify the generality of these patterns, we need more studies on individual variation in thermal reaction norms for locomotor performance in lizards and frogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures that on many shorelines require significant conservation and mitigation interventions. But these interventions require reliable data on the severity and frequency of adverse ecological impacts. Such evidence is often obtained by measuring the response of 'indicator species'.Ghost crabs are the largest invertebrates inhabiting tropical and subtropical sandy shores and are frequently used to assess human impacts on ocean beaches. Here we present the first global meta-analysis of these impacts, and analyse the design properties and metrics of studies using ghost-crabs in their assessment. This was complemented by a gap analysis to identify thematic areas of anthropogenic pressures on sandy beach ecosystems that are under-represented in the published literature.Our meta-analysis demonstrates a broad geographic reach, encompassing studies on shores of the Pacific, Indian, and Atlantic Oceans, as well as the South China Sea. It also reveals what are, arguably, two major limitations: i) the near-universal use of proxies (i.e. burrow counts to estimate abundance) at the cost of directly measuring biological traits and bio-markers in the organism itself; and ii) descriptive or correlative study designs that rarely extend beyond a simple 'compare and contrast approach', and hence fail to identify the mechanistic cause(s) of observed contrasts.Evidence for a historically narrow range of assessed pressures (i.e., chiefly urbanisation, vehicles, beach nourishment, and recreation) is juxtaposed with rich opportunities for the broader integration of ghost crabs as a model taxon in studies of disturbance and impact assessments on ocean beaches. Tangible advances will most likely occur where ghost crabs provide foci for experiments that test specific hypotheses associated with effects of chemical, light and acoustic pollution, as well as the consequences of climate change (e.g. species range shifts).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both habitat patchiness and behaviorally-mediated indirect effects (BMIEs; predator- induced changes in prey behavior that affect the prey's resources) are important in many food webs, but the relationships between these 2 factors have yet to be investigated. To explore effects of habitat patchiness and variation in perceived risk of predation on food-web dynamics, we conducted a factorial experiment in a model aquatic food chain of predator-prey-resource using 2 contrasting predators (adult blue crab Callinectes sapidus and toad fish Opsanus tau), juvenile blue crab as prey, and mussel Geukensia demissa as resource. Both predator presence and habitat patchiness influenced the prey's preference for consuming resources at patch edges instead of interiors. The preference of prey for consuming resources at habitat edges was 4 times stronger in continuous oyster reef habitat than in smaller habitat patches. This suggests that interior resources in continuous habitat experience a refuge from consumption, but this refuge is largely lost in patchy habitat. The mere presence of predators reduced the prey's preference for consuming resources at habitat edges. This BMIE was significant for the ambush predator (toadfish) and the treatment containing both predators, but not for the actively hunting predator (adult blue crab). We conclude that habitat patchiness and predator presence can jointly affect resource distribution by inducing shifts in prey foraging behavior, revealing a need to incorporate BMIEs into habitat fragmentation studies. This conclusion has broad and growing relevance as anthropogenic factors increasingly modify predator abundances and fragment coastal habitats. © Inter-Research 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As oyster fishing continues to degrade reef habitat along the US Atlantic coast, oyster reefs appear increasingly fragmented on small spatial scales. In outdoor mesocosms, experiments tested how consumption of representatives of 4 different bivalve guilds by each of 3 mesopredators varies between continuous and fine-scale patches of oyster reef habitat. The mesopredator that fed least (stone crab) exhibited no detectable change in consumption on any bivalve (ribbed mussel, bay scallop, hard clam, and 3 size classes of eastern oyster). Consumption of bay scallops by both blue crabs and sheepshead fish was greater in small patches than in continuous oyster reef habitat. Of the bivalve guilds tested, only the scallop possesses swimming motility sufficient to reduce predation, an escape response that would likely leave the bivalve protected within structured habitat in larger continuous oyster reefs. Sheepshead consumed more small oysters in the continuous habitat than in the fine patches, while no other predator-prey interaction exhibited differential feeding as a function of habitat patchiness. Consequently, predation by mesopredators on bivalves can vary with the scale of oyster reef patchiness, but this process may depend upon the bivalve guild. Understanding the role of habitat patchiness on fine scales may be increasingly important in view of the declines in apex predatory sharks leading to mesopredator release, and global climate change directly and indirectly enhancing stone crab abundances, thereby increasing potential predation on bivalves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial swimming pools, particularly aquatic centres are increasingly common features of large towns and cities in Australia as people are encouraged to increase their levels of physical activity. Swimming is regarded as a low impact form of exercise and use of indoor facilities allows this to continue all-year round. Aquatic centres are large users of energy for water and space heating with an energy intensity which can be up to seven times that of a commercial office building in Australia. Much of the energy is used to heat water to relatively low temperatures and therefore solar energy technology is capable of providing this energy. In the residential sector, solar thermal systems for heating water and swimming pools is well-established. This is not the case for commercial swimming pools i.e. aquatic centres. In Victoria, a program to encourage commercial pool operators to install solar systems was funded in the early 1980s. This paper describes an investigation into the current use of and attitudes to solar systems in commercial pools through a survey of municipal pool operators in Victoria, south-eastern Australia. The survey found that there has been very little increase in the use of solar energy and that barriers to the use of the technology remain the same as they were nearly 30 years ago. Lack of roof area, poor payback periods and an inability of solar to meet pool heating needs are the most common misconceptions. To improve the uptake of solar heating in commercial pools, further research, particularly looking at the feasibility of integrating traditional heat sources with solar collectors using smart control, is required. An incentive programme and the education of the new generation of consultants and aquatic centre operators, unfamiliar with the potential benefits of solar systems, would also help to increase their uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey.