46 resultados para surface interactions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of surface force apparatus (SFA) capabilities in measuring interactions between surfaces over nanometer separations was described. The technique is used when both the materials are transparent. It was observed that the poorly reflecting surface produce fringes that have low contrast and low finesse. The results show that the technique is successful when the visibility of the interference fringes is maximized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Force measurements between silica surfaces in aqueous solutions of NaCl are reported. Silica is prepared with one of three surface treatments: (i) flaming, (ii) exposure to steam for 150 h, and (iii) brief exposure to ammonia vapor. Analysis of electrical double-layer interactions indicates that the surface density of silanol groups increases with steam treatment, and that exposure to ammonia etches the surface slightly and renders it porous. The force at short range is dominated by a strong repulsion which is attributed to hydration of the surface. The hydration component of the force is not significantly affected by the surface treatments, nor by electrolyte concentration over the range investigated (up to 0.1 M).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model developed previously to analyze force measurements between two deformable droplets in the atomic force microscope [Langmuir 2005, 21, 2912-2922] is used to model the drainage of an aqueous film between a mica plate and a deformable mercury drop for both repulsive and attractive electrical double-layer interactions between the mica and the mercury. The predictions of the model are compared with previously published data [Faraday Discuss. 2003, 123, 193-206] on the evolution of the aqueous film whose thickness has been measured with subnanometer precision. Excellent agreement is found between theoretical results and experimental data. This supports the assumptions made in the model which include no-slip boundary conditions at both interfaces. Furthermore, the successful fit attests to the utility of the model as a tool to explore details of the drainage mechanisms of nanometer-thick films in which fluid flow, surface deformations, and colloidal forces are all involved. One interesting result is that the model can predict the time at which the aqueous film collapses when attractive mica-mercury forces are present without the need to invoke capillary waves or other local instabilities of the mercury/electrolyte interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface forces between an air bubble and a flat mica surface immersed in aqueous electrolyte solutions have been investigated using a modified surface force apparatus. An analysis of the deformation of the air bubble with respect to the mutual position of the bubble and the mica surface, the capillary pressure, and the disjoining pressure allows the air-liquid surface electrical potential to be determined. The experiments show that a long-range, double-layer repulsion acts between the mica (which is negatively charged) and an air bubble in water and in various electrolyte solutions at low concentration, thereby indicating that the air bubble surface is negatively charged. However, there is clear evidence that charge regulation occurs at the air-water interface to maintain a constant surface potential, and as a result of this, the charge at this interface changes from negative to positive as the bubble approaches the mica surface. Because of the attraction that arises as a result of the charge reversal, a finite force is required to separate the bubble from the mica, though the mica remains wetted by the aqueous phase. At the low concentrations investigated, the potential on the gas-liquid interface is independent of the electrolyte type within experimental uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artificial skins exhibit different mechanical properties in compare to natural skins. This drawback makes physical interaction with artificial skins to be different from natural skin. Increasing the performance of the artificial skins for robotic hands and medical applications is addressed in the present paper. The idea is to add active controls within artificial skins in order to improve their dynamic or static behaviors. This directly results into more interactivity of the artificial skins. To achieve this goal, a piece-wise linear anisotropic model for artificial skins is derived. Then a model of matrix of capacitive MEMS actuators for the control purpose is coupled with the model of artificial skin. Next an active surface shaping control is applied through the control of the capacitive MEMS actuators which shapes the skin with zero error and in a desired time. A simulation study is presented to validate the idea of using MEMS actuator for active artificial skins. In the simulation, we actively control 128 capacitive micro actuators for an artificial fingertip. The fingertip provides the required shape in a required time which means the dynamics of the skin is improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the enhancement of the sensitivity and adsorption efficiency of a localized surface plasmon resonance (LSPR) biosensor that includes a layer of graphene sheet on top of the gold layer. For this purpose, biomolecular interactions of biotin-streptavidin with the graphene layer on the gold thin film are monitored. The performance of the LSPR graphene biosensor is theoretically and numerically assessed in terms of sensitivity and adsorption efficiency under varying conditions, including the thickness of biomolecule layer, number of graphene layers and operating wavelength. Enhanced sensitivity and improved adsorption efficiency are obtained for the LSPR graphene biosensor in comparison with its conventional counterpart. It is found that the LSPR graphene biosensor has better sensitivity with lower operating wavelength and larger number of graphene layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the enhancement of sensitivity of variable incidence angle LSPR biosensor by monitoring biomolecular interactions of biotin-streptavidin with gold thin film. The investigation is carried out by means of introducing an additional layer of graphene sheet on top of gold layer (graphene biosensor) and using different coupling configuration of laser beam. The sensitivity, which is indicated by the shift of plasmon resonance angle, increases with graphene deposited onto the gold layers and is linearly related with the number of graphene layers. In addition, an investigation of the shift of plasmon dip is carried out for two different analyte interfaces: air and water. It is found that graphene biosensor has better sensitivity for triangular prism, higher prism angle, and water interface. The evaluation approach involves a plot of a reflectivity curve as a function of the angle of incidence while the operating wavelength is kept fixed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells. This study developed a versatile and simple two-step technique combining oxygen plasma treatment with wet silanization to graft biomolecules onto nylon 6,6 3D porous scaffolds. Scaffolds that were exposed to oxygen plasma exhibited up to 13-fold increase in silane attachment ((3-mercaptopropyl)trimethoxysilane/(3-aminopropyl)trimethoxysilane) compared to untreated scaffolds. To address the limitation of nondestructive characterization of the surface chemistry of 3D scaffolds, fluorescent CdSe/ZnS nanoparticles were used as a reporting tool for -NH(2) functionalized surfaces. Scaffolds that were covalently bound with neutravidin protein remained stable in phosphate buffered saline up to four months. Functionality of the neutravidin-grafted scaffolds was demonstrated by the specific binding of CD4 cells to the scaffold via CD4-specific antibody. Ultimately, these neutravidin-functionalized 3D nylon scaffolds could be easily customized on demand utilizing a plethora of biotinylated biomolecules (antibodies, enzymes and proteins) to select for specific cell of interest. This technique can be extended to other applications, including the enhancement of cell-scaffold interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To assess the compatibility of a new silicone hydrogel lens, asmofilcon A (with four multipurpose disinfecting solutions: OPTIFREE RepleniSH, ReNu MultiPlus, Solo-Care Aqua and MeniCare Soft). Ocular responses and subjective responses were monitored with each lens-care system combination.

Methods: The study was conducted as a prospective, bilateral, clinical trial with a single-masked investigator, and randomized cross-over design with four phases, (one for each care system). Each study phase comprised of two consecutive days of lens wear where the lenses were inserted on day 1 directly from the blister-packs and worn for over 8 hr, then inserted on day 2 after overnight disinfection with one of the study lens care systems. Twenty-five adapted soft contact lens wearers who were able to wear their habitual lenses comfortably for more than 12 hr were recruited.

Results: There were statistically significant differences in corneal staining found for all the lens-care systems when comparing the results of day 1 (from the blister pack) with day 2 (following care system use) (P < 0.05). ReNu MultiPlus solution had the highest grade for corneal staining at the 2-hr time point on day 2 which then decreased by 6 hr (P < 0.05). There was no difference between the lens care systems and the rating of subjective comfort over either of the two days. The rating of dryness and burning sensations were only slightly increased at 6 hr for all lens care systems except ReNu MultiPlus where burning was highest on insertion (P < 0.05).

Conclusion: Corneal staining observed in this study does not seem to have been related to the presence of polyhexamethylene biguanide (0.0001% wv) that was present in three of the four care systems. Only one care system (ReNu MultiPlus) demonstrated an associated level of corneal staining that was statistically significant; however, this was not considered to be of clinical relevance. These results suggest that using this novel surface-treated silicone hydrogel lens may result in less lens and lens care-related interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a multilayer localized surface plasmon resonance (LSPR) graphene biosensor that includes a layer of graphene sheet on top of the gold layer, and the use of different coupled configuration of a laser beam. The study also investigates the enhancement of the sensitivity and detection accuracy of the biosensor through monitoring biomolecular interactions of biotin-streptavidin with the graphene layer on the gold thin film. Additionally, the role of thin films of gold, silver, copper and aluminum in the performance of the biosensor is separately investigated for monitoring the binding of streptavidin to the biotin groups. The performance of the LSPR graphene biosensor is theoretically and numerically assessed in terms of sensitivity, adsorption efficiency, and detection accuracy under varying conditions, including the thickness of biomolecule layer, number of graphene layers and operating wavelength. Enhanced sensitivity and improved adsorption efficiency are obtained for the LSPR graphene biosensor in comparison with its conventional counterpart; however, detection accuracy under the same resonance condition is reduced by 5.2% with a single graphene sheet. This reduction in detection accuracy (signal to noise ratio) can be compensated for by introducing an additional layer of silica doped B2O3 (sdB2O3) placed under the graphene layer. The role of prism configuration, prism angle and the interface medium (air and water) is also analyzed and it is found that the LSPR graphene biosensor has better sensitivity with triangular prism, higher prism angle, lower operating wavelength and larger number of graphene layers. The approach involves a plot of a reflectivity curve as a function of the incidence angle. The outcomes of this investigation highlight the ideal functioning condition corresponding to the best design parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localized surface plasmon resonance (LSPR) is a promising detection method for label-free sensing of biomolecules. In this paper, a multilayer design for a LSPR biosensor is presented. In the proposed design, a periodic array of dielectric grating is incorporated on top of a graphene layer in the biosensor. The aim is to improve sensitivity of the LSPR biosensor through monitoring biomolecular interactions of biotin-streptavidin. Sensitivity improvement is obtained for the proposed LSPR biosensor compared with conventional SPR counterparts. In addition, to optimize the design, we have investigated grating geometry including volume factor and grating depth. The outcome of this investigation identifies ideal functioning conditions corresponding to the best design parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.