33 resultados para quenching


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wool fibre has a complex morphology, consisting of an outer layer of cuticle scales surrounding an inner cortex. These two components are hard to separate effectively except by using harsh chemical treatments, making it difficult to determine the susceptibility of the different components of the fibre to photoyellowing. An approach to this problem based on mechanical fibre modification is described. To expose the inner cortex of wool to different degrees, clean wool fibres were converted into ‘powders’ of various fineness via mechanical chopping, air-jet milling, ball milling or their combination. Four types of powdered wool (samples A, B, C and D) were produced with reducing particle size distributions and an increasing level of surface damage as observed using SEM. Sample A contained essentially intact short fibre snippets and sample D contained a large amount of exposed cortical materials. Samples B and C contained a mixture of short fibre snippets and cortical materials. Solid wool discs were then compressed from the corresponding powder samples in a polished stainless steel die to enable colour measurement and UV irradiation studies. ATR-FTIR studies on powder discs demonstrated a small shift in the amide I band from 1644 cm−1 for disc A to 1654 cm−1 for disc D due to the different structures of the wool cuticle and cortex, in agreement with previous studies. Similarly an increase in the intensity ratio of the amide I to amide II band (1540 cm−1) was observed for disc D, which contains a higher fraction of cortical material at the surface of the disc.

Discs prepared from sample D appeared the lightest in colour before exposure and had the slowest photoyellowing rate, whereas discs made from powders A–C with a higher level of cuticle coverage were more yellow before exposure and experienced a faster rate of photoyellowing. This suggests that the yellow chromophores of wool may be more prevalent in cuticle scales, and that wool photoyellowing occurs to a greater extent in the cuticle than in the cortex. Photo-induced chemiluminescence measurements showed that sample D had a higher chemiluminescence intensity after exposure to UVA radiation and a faster decay rate than samples A and B. Thus one of the roles of the wool cuticle may be to protect the cortex by quenching of free radical oxidation during exposure to the UV wavelengths present in sunlight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work examines the microstructure that evolves during the annealing of hot worked magnesium alloy AZ31. First, the influences of deformation and annealing conditions on the microstructures are assessed. It is found that the annealing behaviour is consistent with what one would expect for a recrystallization type reaction. Whilst both the deformation and annealing conditions influence the time required to reach a stable annealed microstructure, the grain size attained is governed solely by the prior deformation conditions employed. At the highest temperature and strain rate examined, the rate of recrystallization is quite high and the grain size was found to be approximately double when annealed for only 1 s prior to quenching. Finally, semi-empirical equations are developed to predict the kinetics of recrystallization, as well as the evolution of grain size, during annealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shape memory behaviour of two Fe–Mn–Si-based alloys has been investigated. One alloy was a reference alloy, and the other alloy was
similar in composition except that it contained 0.55 wt% Ti. Following solution treatment and quenching, strip samples were subjected to three types
of treatments; isothermal holding, cold rolling followed by isothermal holding, and hot rolling followed by isothermal holding. These treatments
resulted in the formation of intermetallic precipitates in the Ti-containing alloy, while the reference alloy remained precipitate-free. In comparing
the shape memory of the reference and the particle-containing alloy after identical heat treatments, it was found that the formation of precipitates
had a beneficial effect on the shape memory in all cases. In general, the larger precipitates caused a larger increase in the shape memory. The effect
of particle size on shape memory has been analysed using the current data and published results for a range of precipitate types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composite from a broad bandgap polymer, poly(phenylene ethylene) (PPE), and nano-sized TiO2 particles was found to be able to sense 2,4,6-trinitrotoluene (TNT) for TNT sensor. Fluorescence quenching induced by charge transfer from PPE to nano-sized TiO2 was observed in toluene solution. At high TiO2 composition, a strong exciplex band occurred at 550 nm. Under prolonged light irradiation at 400 nm, unusual fluorescence gains took place at 460 nm, companied with a very small change in the UV–vis absorbance. After 30 min light irradiation, the fluorescence at 460 nm reached a maximum, but the peak at 550 nm disappeared. This composite showed amplified sensor response to TNT compared to the pristine PPE film, which can be potentially used as sensing material for detecting TNT based explosives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-aligned nanofibers were prepared from a conjugated polymer, poly(triphenylamine-alt-biphenylene vinylene) (TPA-PBPV), using a solution-assisted template wetting technique. TPA-PBPV was also coated on the surface of electrospun polyacrylonitrile (PAN) nanofiber nonwoven membrane. The extremely large surface area, highly porous fibrous structure, optical scattering and evanescent-wave guiding effect imparted these one-dimensional (1D) nanofibrous materials with highly improved sensory ability to 2,4,6-trinitrotoluene (TNT) vapors and higher quenching efficiency than that of the neat TPA-PBPV films. The results suggest that nanofibrous structures could be a promising strategy to improve the sensory efficiency of fluorescent chemosensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium-nickel (Ti-Ni) shape memory alloys have been widely used for biomedical applications in recent years. However, it is reported that Ni is allergic and possibly carcinogenic for the human body. Therefore, it is desirable to develop new Ni-free Ti-based shape memory alloys for biomedical applications. In the present study, a new Ti-18Nb-5Mo-5Sn (wt.%) alloy, containing only biocompatible alloying elements, was designed with the aid of molecular orbital method and produced by vacuum arc melting. Both β and α″ martensitic phases were found to coexist in the alloy after ice-water quenching, indicating the martensitic transformation. The phase transformation temperatures of the Ti-18Nb-5Mo-5Sn alloy were Ms = 7.3 °C, Mf = −31.0 °C, As = 9.9 °C, and Af = 54.8 °C. Superelasticity was observed in the alloy at a temperature higher than the Af temperature. A totally recovered strain of 3.5 % was achieved for the newly designed Ti-based shape memory alloy with a pre-strain of 4 %.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have first demonstrated that a random laser action generated by a hybrid film composed of a semiconducting organic polymer (SOP) and TiO2 nanoparticles can be used to detect 2,4,6-trinitrotoluene (TNT) vapors. The hybrid film was fabricated by spin-casting SOP solution dispersed with nanosized TiO2 particles on quartz glass. The SOP in the hybrid film functioned as both the gain medium and the sensory transducer. A random lasing action was observed with a certain pump power when the size (diameter of 50 nm) and concentration (8.9 - 1012/cm3) of TiO2 nanoparticles were optimized. Measurements of fluorescence quenching behavior of the hybrid film in TNT vapor atmosphere (10 ppb) showed that attenuated lasing in optically pumped hybrid film displayed a sensitivity to vapors of explosives more than 20 times higher than was observed from spontaneous emission. This phenomenon has been explained with the four-level laser model. Since the sensory transducer used in the hybrid polymer/nanoparticles system could be replaced by other functional materials, the concept developed could be extended to more general domains of chemical or environment detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use infrared spectroscopy to study the evolution of protein folding intermediate structures on arbitrarily slow time scales by rapidly quenching thermally unfolded hen egg white lysozyme in a glassy matrix, followed by reheating of the protein to refold; upon comparison with differential scanning calorimetric experiments, low-temperature structural changes that precede the formation of energetic native contacts are revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24 were synthesized by the solid-state reaction method. The crystal phases were characterized by X-ray powder diffraction. The photoluminescence excitation and emission spectra were investigated. The luminescence excitation and emission spectra confirm that the phosphors are efficiently excited by near UV light. The dependence of luminescence intensities on the heating temperatures was investigated. The Ca9Eu2W4O24 phosphor exhibits higher thermal stability than that of Sr9Eu2W4O24. The crystallographic sites for Eu3+ ions in Ca9Eu2W4O24 and Sr9Eu2W4O24 are investigated by the site-selective excitation spectra in the 5D07F0 wavelength region. It is identified that the Eu3+ ions occupy only M sites (statistically occupied by 0.5Eu and 0.5Ca) in Ca9Eu2W4O24 and, however, the Eu3+ ions can substitute both M sites (Eu3+ + Sr2+) and Sr2+ sites in Sr9Eu2W4O24. The luminescence spectra and the thermal stability are discussed on the basis of the crystal structure, Eu3+ site-distributions and the energy transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the complete, rapid, and reversible switching between the emissions from two electrogenerated chemiluminescence (ECL) systems contained within the same solution, controlled by simple modification of the applied potential. The fundamental bases of the approach are the ability to selectively 'switch on' luminophores at distinct oxidation potentials, and an intriguing observation that the emission from the well-known electrochemiluminescent complex, fac-Ir(ppy)3, (where ppy is 2-phenylpyridinato), can be selectively 'switched-off' at high overpotentials. The dependence of this phenomenon on high concentrations of the co-reactant implicates quenching of the excited [Ir(ppy)3]* state by electron transfer. Rapid spectral scanning during modulation of the applied potential reveals well resolved maxima for mixtures comprising either green and red or green and blue luminophores, illustrating the vast potential of this approach for multiplexed ECL detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perovskite oxide offers an attractive alternative to precious metal electrocatalysts given its low cost and high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity. The results obtained in this work suggest a correlation of crystal structure with ORR and OER activity for LaNiO3-?. LaNiO3-? perovskites with different crystal structure were obtained by heating at different temperatures, e.g., 400, 600, and 800 C followed by quenching into room temperature. Cubic structure (relative to rhombohedral) leads to higher ORR and OER activity as well as enhanced bi-functional electrocatalytic activity, e.g., lower difference in potential between the ORR at -3 mA cm-2 and OER at 5 mA cm -2 (?E). Therefore, this work shows the possibility to adjust bi-functional activity through a simple process. This correlation may also extend to other perovskite oxide systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The author's studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching observed from photoluminescence of TiO2-ZnO hybrid nanostructures implied an enhanced charge transfer/separation process resulting from the novel type II heterostructures with fine interfaces. The catalytic performance of annealing products with different TiO2phase varied with the annealing temperatures. This is attributed to the combinational changes in Egof the TiO2phase, the specific surface area and the quantity of surface hydroxyl groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,4,6-trichlorophenol (2,4,6-TCP) aerobic degrading granules were successfully developed in the sequencing batch airlift reactor. The key strategy used in cultivation of the granules was dosing glucose and acetate as co-substrates. After granulation, average concentrations of 2,4,6-TCP and COD in the effluent were less than 8mgL-1 and 59mgL-1, respectively. The removal efficiencies of 2,4,6-TCP and COD were above 93% and 90%, respectively. The specific degradation rate of 2,4,6-TCP peaked at 61mg 2,4,6-TCP gVSS-1h-1 when inoculated at the concentration of 400mgL-1. The extracellular polymeric substance (EPS) contents of the 2,4,6-TCP aerobic degrading granules were decreased compared with the contents in seed sludge. Two peaks attributed to the protein-like fluorophores were identified by three-dimensional excitation emission matrix (EEM) fluorescence spectra. The decrease of fluorescence parameters, e.g., peak locations, intensities, indicated quenching effect of 2,4,6-TCP on the EPS fluorescence. Meanwhile, the shift of peak position indicated chemical changes of the EPS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel protein with anti-tumor activities named malanin was isolated and purified from an endemic plant in Yunnan and Guangxi provinces. Effects of copper ion, silver ion and calcium ion on malanin and apo-malanin fluorescence spectra were studied. The results showed that copper ion leads to obvious statistic quenching of malanin and apo-malanin fluorescence. The dissociation constant of them from malanin and apo-malanin were about 2.37×10-4 and 2.66×10-4 mol·L-1, respectively. The silver ion did not have quenching action on malanin fluorescence, but it had statistic quenching effect on apo-malanin fluorescence, and its dissociation constant was 2.37×10-4 mol·L-1. Calcium ion did not have quenching action on malanin and apo-malanin fluorescence. It plays an important role in keeping malanin natural conformation.