315 resultados para muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effects of alcohol intake on postexercise muscle glycogen restoration with samples from vastus lateralis being collected immediately after glycogen-depleting cycling and after a set recovery period. Six well-trained cyclists undertook a study of 8-h recovery (2 meals), and another nine cyclists undertook a separate 24-h protocol (4 meals). In each study, subjects completed three trials in crossover order: control (C) diet [meals providing carbohydrate (CHO) of 1.75 g/kg]; alcohol-displacement (A) diet (1.5 g/kg alcohol displacing CHO energy from C) and alcohol + CHO (AC) diet (C + 1.5 g/kg alcohol). Alcohol intake reduced postmeal glycemia especially in A trial and 24-h study, although insulin responses were maintained. Alcohol intake increased serum triglycerides, particularly in the 24-h study and AC trial. Glycogen storage was decreased in A diets compared with C at 8 h (24.4 ± 7 vs. 44.6 ± 6 mmol/kg wet wt, means ± SE, P < 0.05) and 24 h (68 ± 5 vs. 82 ± 5 mmol/kg wet wt, P < 0.05). There was a trend to reduced glycogen storage with AC in 8 h (36.2 ± 8 mmol/kg wet wt, P = 0.1) but no difference in 24 h (85 ± 9 mmol/kg wet wt). We conclude that 1) the direct effect of alcohol on postexercise glycogen synthesis is unclear, and 2) the main effect of alcohol intake is indirect, by displacing CHO intake from optimal recovery nutrition practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle.
Objective: The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid transport and &szlig;-oxidation in skeletal muscle.
Design: Fourteen well-trained male cyclists and triathletes with a mean (&plusmn; SE) age of 26.9 &plusmn; 1.7 y, weight of 73.7 &plusmn; 1.7 kg, and peak oxygen uptake of 67.0 &plusmn; 1.3 mL &dot; kg-1 &dot; min-1 consumed either a high-fat diet (HFat: > 65% of energy as lipids) or an isoenergetic high-carbohydrate diet (HCho: 70–75% of energy as carbohydrate) for 5 d in a crossover design. On day 1 (baseline) and again after 5 d of dietary intervention, resting muscle and blood samples were taken. Muscle samples were analyzed for gene expression [fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm), carnitine palmitoyltransferase I (CPT I), &szlig;-hydroxyacyl-CoA dehydrogenase (&szlig;-HAD), and uncoupling protein 3 (UCP3)] and concentrations of the proteins FAT/CD36 and FABPpm.
Results: The gene expression of FAT/CD36 and &szlig; -HAD and the gene abundance of FAT/CD36 were greater after the HFat than after the HCho diet (P < 0.05). Messenger RNA expression of FABPpm, CPT I, and UCP-3 did not change significantly with either diet.
Conclusions
: A rapid and marked capacity for changes in dietary fatty acid availability to modulate the expression of mRNA-encoding proteins is necessary for fatty acid transport and oxidative metabolism. This finding is evidence of nutrient-gene interactions in human skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to quantify the strength of motor-unit coherence from the first dorsal interosseus muscle in young and old adults using data obtained in a previous study, where no differences in motor-unit synchronization between the two groups were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to ß-actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study examined the role of body dissatisfaction, body image importance, sociocultural influences (media and parent and peer encouragement), self-esteem and negative affect on body change strategies to decrease weight and increase muscles in adolescent boys and girls. Surveys were administered to 587 boys and 598 girls aged between 11 and 15 years. For both genders, parent and peer encouragement and negative affect were the primary predictors of body dissatisfaction, body image importance and strategies to decrease weight and increase muscles. In addition, body image importance was a significant factor in the development of both types of body change strategies, while the media only predicted strategies to decrease weight. Lastly, the effects of self-esteem were mediated by body dissatisfaction. For boys, a stronger focus on body importance occurred among the boys who were generally satisfied with their bodies while the reverse was the case for girls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined factors that influence body image and strategies to either lose weight or increase muscle among children. Participants were 237 boys and 270 girls. Body mass index (BMI), body dissatisfaction, cognitions and behaviors to both lose weight and increase muscles, as well as self-esteem and positive and negative affect, were evaluated. Self-esteem was associated with body satisfaction, positive affect predicted strategies to lose weight and increase muscles, and negative affect predicted body dissatisfaction and cognitions to lose weight and increase muscles. Boys were more likely to focus on changing muscles. Respondents with higher BMIs were more focused on losing weight but not muscle. The discussion focuses on health risk behaviors related to eating and exercise among children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined the validity and reliability of measuring the expression of various genes in human skeletal muscle using quantitative real-time RT-PCR on a GeneAmp 5700 sequence detection system with SYBR Green 1 chemistry. In addition, the validity of using some of these genes as endogenous controls (i.e., housekeeping genes) when human skeletal muscle was exposed to elevated total creatine levels and exercise was also examined. For all except 28S, linear relationships between the logarithm of the starting RNA concentrations and the cycle threshold (CT) values were established for ß-actin, ß2-microglobulin (ß2M), cyclophilin (CYC), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a linear response between CT values and the logarithm of a given amount of starting cDNA for all the genes tested. The overall intra-assay coefficient of variance for these genes was 1.3% and 21% for raw CT values and the linear value of 2-CT, respectively. Interassay variability was 2.3% for raw CT values and 34% for the linear value of 2-CT. We also examined the expression of various housekeeping genes in human skeletal muscle at days 0, 1, and 5 following oral supplementation with either creatine or a placebo employing a double-blind crossover study design. Treatments were separated by a 5-wk washout period. Immediately following each muscle sampling, subjects performed two 30-s all-out bouts on a cycle ergometer. Creatine supplementation increased (P < 0.05) muscle total creatine content above placebo levels; however, there were no changes (P > 0.05) in CT values across the supplementation periods for any of the genes. Nevertheless, 95% confidence intervals showed that GAPDH was variable, whereas ß-actin, ß2M, and CYC were the least varying genes. Normalization of the data to these housekeeping genes revealed variable behavior for ß2M with more stable expressions for both ß-actin and CYC. We conclude that, using real-time RT-PCR, ß-actin or CYC may be used as housekeeping genes to study gene expression in human muscle in experiments employing short-term creatine supplementation combined with high-intensity exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review describes several factors involved in regulating skeletal muscle creatine uptake and total creatine content. Skeletal muscle total creatine content increases with oral creatine supplementation, although the response is variable. Factors that may account for this variation are carbohydrate intake, physical activity, training status, and possibly fiber type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: Recruitment of the protein c-Cbl to the insulin receptor (IR) and its tyrosine phosphorylation via a pathway that is independent from phosphatidylinositol 3prime-kinase is necessary for insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. The activation of this pathway by insulin or exercise has yet to be reported in skeletal muscle. Methods: Lean and obese Zucker rats were randomly assigned to one of three treatment groups: (i) control, (ii) insulin-stimulated or (iii) acute, exhaustive exercise. Hind limb skeletal muscle was removed and the phosphorylation state of IR, Akt and c-Cbl measured.  Results:   Insulin receptor phosphorylation was increased 12-fold after insulin stimulation (p<0.0001) in lean rats and threefold in obese rats. Acute exercise had no effect on IR tyrosine phosphorylation. Similar results were found for serine phosphorylation of Akt. Exercise did not alter c-Cbl tyrosine phosphorylation in skeletal muscle of lean or obese rats. However, in contrast to previous studies in adipocytes, c-Cbl tyrosine phosphorylation was reduced after insulin treatment (p<0.001). Conclusions/interpretation: We also found that c-Cbl associating protein expression is relatively low in skeletal muscle of Zucker rats compared to 3T3-L1 adipocytes and this could account for the reduced c-Cbl tyrosine phosphorylation after insulin treatment. Interestingly, basal levels of c-Cbl tyrosine phosphorylation were higher in skeletal muscle from insulin-resistant Zucker rats (p<0.05), but the physiological relevance is not clear. We conclude that the regulation of c-Cbl phosphorylation in skeletal muscle differs from that previously reported in adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect of vegetarianism on skeletal muscle total creatine (TCr) content and creatine transporter (CreaT) gene expression, prior to and during 5 d of Cr supplementation (CrS). In a double-blind, crossover design, 7 vegetarians (VEG) and nonvegetarians (NVEG) were assigned Cr or placebo supplements for 5 d and after 5 wk, received the alternative treatment. Muscle sampling occurred before, and after 1 and 5 d of treatment ingestion. Basal muscle TCr content was lower (P < 0.05) in VEG compared with NVEG. Muscle TCr increased (P < 0.05) throughout the Cr trial in both groups but was greater (P < 0.05) in VEG compared with NVEG, at days 1 and 5. CreaT gene expression was not different between VEG and NVEG. The results indicate that VEG have a lower muscle TCr content and an increased capacity to load Cr into muscle following CrS. Muscle CreaT gene expression does not appear to be affected by vegetarianism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle glycogen is an important fuel for contracting skeletal muscle during prolonged strenuous exercise, and glycogen depletion has been implicated in muscle fatigue. It is also apparent that glycogen availability can exert important effects on a range of metabolic and cellular processes. These processes include carbohydrate, fat and protein metabolism during exercise, post-exercise glycogen resynthesis, excitation–contraction coupling, insulin action and gene transcription. For example, low muscle glycogen is associated with reduced muscle glycogenolysis, increased glucose and NEFA uptake and protein degradation, accelerated glycogen resynthesis, impaired excitation–contraction coupling, enhanced insulin action and potentiation of the exercise-induced increases in transcription of metabolic genes. Future studies should identify the mechanisms underlying, and the functional importance of, the association between glycogen availability and these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of GLUT4 in skeletal muscle enhances whole-body insulin action. Exercise increases GLUT4 gene and protein expression, and a binding site for the myocyte enhancer factor 2 (MEF-2) is required on the GLUT4 promoter for this response. However, the molecular mechanisms involved remain elusive. In various cell systems, MEF-2 regulation is a balance between transcriptional repression by histone deacetylases (HDACs) and transcriptional activation by the nuclear factor of activated T-cells (NFAT), peroxisome proliferator-activated receptor- coactivator 1 (PGC-1), and the p38 mitogen-activated protein kinase. The purpose of this study was to determine if these same mechanisms regulate MEF-2 in contracting human skeletal muscle. Seven subjects performed 60 min of cycling at 70% of Vo2peak. After exercise, HDAC5 was dissociated from MEF-2 and exported from the nucleus, whereas nuclear PGC-1 was associated with MEF-2. Exercise increased total and nuclear p38 phosphorylation and association with MEF-2, without changes in total or nuclear p38 protein abundance. This result was associated with p38 sequence-specific phosphorylation of MEF-2 and an increase in GLUT4 mRNA. Finally, we found no role for NFAT in MEF-2 regulation. From these data, it appears that HDAC5, PGC-1, and p38 regulate MEF-2 and could be potential targets for modulating GLUT4 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effect of exercise on protein kinase C (PKC) activity and localization in human skeletal muscle, eight healthy men performed cycle  ergometer exercise for 40 min at 76±1% the peak pulmonary O2 uptake (VO2peak), with muscle samples obtained at rest and after 5 and 40 min of exercise. PKC expression, phosphorylation and activities were examined by immunoblotting and in vitro kinase assays of fractionated and whole tissue preparations. In response to exercise, total PKC activity was slightly higher at 40 min in an enriched membrane fraction, and using a pSer-PKC-substrate motif antibody it was revealed that exercise increased the serine phosphorylation of a ∼50 kDa protein. There were no changes in conventional PKC (cPKC) or PKCθ activities; however, atypical PKC (aPKC) activity was ∼70% higher at 5 and 40 min, and aPKC expression and Thr410/403 phosphorylation were unaltered by exercise. There were no effects of exercise on the abundance of PKCα, PKCδ, PKCθ and aPKC within cytosolic or enriched membrane fractions of skeletal muscle. These data indicate that aPKC, but not cPKC or PKCθ, are activated by exercise in contracting muscle suggesting a potential role for aPKC in the regulation of skeletal muscle function and metabolism during exercise in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six untrained, male subjects (23 ± 1 years old, 84 ± 5 kg, VO2peak= 3.7 ± 0.8 l min–1) exercised for 60 min at 75 ± 1%VO2peak on 7 consecutive days.  Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by ~20% and muscle glycogen concentration by ~40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those  measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 ± 1.5 versus 3.4 ± 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 ± 3.0 versus 3.4 ± 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.