26 resultados para mammalian-cells


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Broad antifungal structure-activity relationships governing epoxy-endoperoxides 2 and 3 and their parent endoperoxides 1 are reported. Their inhibitory activity against Candida albicans in conjunction with hemolytic activity and/or growth inhibition of cultured mammalian cells are reported. This information provided guidance for the further development of endoperoxide and epoxy-endoperoxides as topical antifungal agents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A protocol for culturing mammalian type 1 astrocytic cells, using female post-natal rat cerebral cortical tissue, was established and refined for use in steroidogenic metabolic studies incorporating progestin radioisotopes. Cultures were characterised for homogeneity using standard morphological and immunostaining techniques. Qualitative and quantitative studies were conducted to characterise the progesterone (P) metabolic pathways present in astrocytes in vitro. Of particular interest was the formation of the P metabolite, 5á-pregnan-3á-ol-20-one (THP). THP is a GABA(A) receptor agonist, believed to play a vital role in neural functioning and CNS homeostasis. One aim of this study was to observe any modulatory effects selected neuroactive ligands have on the conversion of P into THP, in an attempt to link astrocytic steroidogenesis with neuronal control. In qualitative studies, chromatographic procedures were used to establish the progestin profile of cerebral cortical astrocytes. Tritiated P, DHP (5á-pregnan-3,20-dione) and THP incurbates were preliminary fractionated by either normal phase (NP) or reverse phase (RP) high performance liquid chromatography (HPLC). The radiometabolites associated with each fraction were further chromatographed, before and/or after chemical derivatistation, by the aforemention HPLC procedures and thin layer chromatography (TLC). Steroid radiometabolites were tentatively identified by comparing their chromatographic mobility with authentic steroids. The identity of the main putative 5á-reduced P metabolities, DHP, THP and 5á-pregnan-3á,20á-diol (20áOH-THP) were further confirmed by isotopic dilution analysis. Their conclusive identification, along with the tentative identification of 20á-hydroxypreg-4-en-3-one (20áOH-P) and 20á-hydroxy-5á-pregnan-3-one (20áOH-DHP), verify the localisation of 5á-reductase, 3á-hydroxy steroif oxidoreductase (HSOR), and 20á-HSOR activity in the cultured astrocytes utilised in this study programme. Other minor metabolites detected were tentatively identified, including 5á-pregnan-3á,21-diol-20-one (THDoc), indicating the presence of 21-hydroxylase enzymatic activity. THDoc, like THP, is a GABA(A) receptor agonist. The chemical and physical characterisation of several yet unidentified progestin metabolites, associated with a highly polar RP HPLC fraction (designated RP peak 1*), indicate the presence of one or more extra hydroxylase enzymes. Quantitative analysis included a preliminary study. In this study, the percentage yields of radiometabolites formed in cultures incubated with increasing substrate concentrations of (3)H-P for 24 hours were determined. At the lower concentrations examined (ie 0.5 to 50nM), the metabolites associated with the polar RP HPLC fraction (RP peak 1*) collectively have the highest percentage yield. They are subsequently considered metabolic end products of degradative catabolic P pathways. The percentage yield of THP peaks in the medium concentration ranges (ie 5 to 500nM), whereas DHP remains fairly static at a low level with increasing concentration. Both DHP and THP are considered metabolic pathway intermediates. The percentage yield of 20áOH-THP continues to increase with increasing concentration over 5nM, superseding THP approaching the highest concentration examined (5000nM). This indicated the formation of 20áOH-THP does not occur entirely via THP. 20áOH-THP also possibly serves as the direct intermediate in the formation of the main radiometabolites associated with RP peak 1*. A time/yield study incorporating incubation times from one to 24 hours was also conducted. The full array of radiometabolites (individually or in groups) formed in astrocyte cultures incubated with 50nM tritiated P, DHP of THP, were assayed. Cultures were observed to rapidly convert any DHP into THP, showing astrocytic 3á-HSOR activity is very high. The study also showed 5á-reduction (ie the conversation of P into DHP) is the rate limiting reaction in the two step conversion of P into THP. 5á-Reduction also appears to be a rate limiting step in the formation of 20á-hydroxylated metabolites in astrocytes. Cultures incubated with the tritiated 5á-reduced pregnanes from one to four hours form greater quantities to 20á-hydroxylated radiometabolites compared to cultures incubated with (3)H-P. The time yield/studies also provided further evidence the unidentified polar radiometabolites associated with RP peak 1* are metabolic end products. For the P and DHP incubates, the collective formation of the aforementioned polar radiometabolites initially lags behind the formation of THP. As the formation of the latter begins to plateau with increasing time between four to 24 hours, the net yield of radiometabolites associated with RP peak 1* continues to rise. The time/yield studies also indicate 5á-reduction and perhaps 3á-hydroxylation are pre-requisite steps in the formation of the polar metabolites. Cultures incubated with the 5á-reduced progestins from one to four hours form higher yields of the radiometabolites associated with RP peak 1* compared to cultures incubated with P as substrate. The net yields of the radiometabolites associated with RP peak 1* for cultures incubated with THP were substantially higher compared to cultures incubated with DHP after equivalent times. The effect selected neuroligands have on the yield of radiometabolites formed by cultured astrocytes incubated with 50nM (3)H-P was also examined. Dibutyryl cyclic adenosine monophosphate (DBcAMP), not actually a neuroligand per se, but an analog of the intracellular secondary messenger cAMP, was also utilised in these studies. The inhibitory neurotransmitter ă-amino-nbutyric acid (GABA), DBcAMP and isoproterenol (a â-adrenergic receptor agonist) all quickly induce a transient but substantial increase in 20á-HSOR activity in cultured astrocytes. Cultures pretreated with these three compounds (10, 20 and 1µM respectively) form substantially higher yields of 20á-hydroxylated metabolites, including 20áOH-THP (between 200 to 580% greater), when incubated with 50nM (3)H-P for one to four hours. These increases also coincide with increases in the net yield of metabolites formed (by 16 to 48%). The same pre-treated cultures form significantly lower yields of THP, by 25 to 41%, after one hour. This is most likely due to the increased metabolism of any formed THP into 20áOH-THP. Octopamine (an á-adrenergic agonist) only induces a slight increase in 20á-HSOR activity, having relatively little effect on the yield of 20áOH-THP formed. Pretreatment with octopamine induces a significant increase in the yield of THP for cultures incubated with (3)H-P for four hours (by 24%). The increase in THP formation appears to be due to an increase in 3á-HSOR activity, as judged by the concomitant drop in the yield of the 5á-reduced, 3-keto substrates. An increase in 5á-reductase activity cannot be excluded however. Isoproterenol appears to induce an increase in 5á-reductase activity as isoproterenol appears to induce an increase in 5á-reductase activity as isoproterenol one and four hour incubates have higher yields of DHP. This is in contrast to the other three incubates. After 12 hours, all incubates have higher yields of THP (15-30%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10–12 month lactation period, female fur seals suckle pups on shore for 2–3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 μm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (αS2-casein, β-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell–matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the metabolism of the steroid progesterone within both rat and mouse brain cells in culture. The research identified a steroid 21-hydroxylase within the rat culture system, that has downstream implications on stress and behaviour. Novel uses for a stain to accurately discriminate two brain celltypes were discovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane nanotubes (MNTs) are newly discovered cellular extensions that are either blind-ended or can connect widely separated cells. They have predominantly been investigated in cultured isolated cells, however, previously we were the first group to demonstrate the existence of these structures in vivo in intact mammalian tissues. We previously demonstrated the frequency of both cell–cell or bridging MNTs and blind-ended MNTs was greatest between major histocompatibility complex (MHC) class II+ cells during corneal injury or TLR ligand-mediated inflammation. The present study aimed to further explore the dynamics of MNT formation and their size, presence in another tissue, the dura mater, and response to stress factors and an active local viral infection of the murine cornea. Confocal live cell imaging of myeloid-derived cells in inflamed corneal explants from Cx3cr1GFP and CD11ceYFP transgenic mice revealed that MNTs form de novo at a rate of 15.5 μm/min. This observation contrasts with previous studies that demonstrated that in vitro these structures originate from cell–cell contacts. Conditions that promote formation of MNTs include inflammation in vivo and cell stress due to serum starvation ex vivo. Herpes simplex virus-1 infection did not cause a significant increase in MNT numbers in myeloid cells in the cornea above that observed in injury controls, confirming that corneal epithelium injury alone elicits MNT formation in vivo. These novel observations extend the currently limited understanding of MNTs in live mammalian tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian cornea contains an extensive network of resident macrophages and dendritic cells. To determine the role of these cells in LPS-induced corneal inflammation, TLR4−/− mice were sublethally irradiated and reconstituted with bone marrow cells from either enhanced GFP (eGFP)+/C57BL/6 or eGFP+/TLR4−/− mice. The corneal epithelium was abraded, LPS was added topically, and cellular infiltration to the corneal stroma and development of corneal haze were examined after 24 h. TLR4−/− mice reconstituted with C57BL/6, but not TLR4−/− bone marrow cells donor cells were found to cause infiltration of eGFP+ cells to the cornea, including neutrophils, and also increased corneal haze compared with saline-treated corneas. In a second experimental approach, corneas of transgenic macrophage Fas induced apoptosis (Mafia) mice were stimulated with LPS. These mice express eGFP and a suicide gene under control of the c-fms promoter, and systemic treatment with the FK506 dimerizer (AP20187) causes Fas-mediated apoptosis of monocytic cells. AP20187-treated mice had significantly fewer eGFP+ cells in the cornea than untreated mice. After stimulation with LPS neutrophil recruitment and development of corneal haze were impaired in AP20187-treated mice compared with untreated controls. Furthermore, LPS induced CXCL1/KC and IL-1α production within 4 h in corneas of untreated Mafia mice, which is before cellular infiltration; however, cytokine production was impaired after AP20187 treatment. Together, results from both experimental approaches demonstrate an essential role for resident corneal monocytic lineage cells (macrophages and dendritic cells) in development of corneal inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural and synthetic triterpenoids have been shown to kill cancer cells via multiple mechanisms. The therapeutic effect and underlying mechanism of the synthetic triterpenoid bardoxolone methyl (C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid; CDDO-Me) on esophageal cancer are unclear. Herein, we aimed to investigate the anticancer effects and underlying mechanisms of CDDO-Me in human esophageal squamous cell carcinoma (ESCC) cells. Our study showed that CDDO-Me suppressed the proliferation and arrested cells in G2/M phase, and induced apoptosis in human ESCC Ec109 and KYSE70 cells. The G2/M arrest was accompanied with upregulated p21Waf1/Cip1 and p53 expression. CDDO-Me significantly decreased B-cell lymphoma-extra large (Bcl-xl), B-cell lymphoma 2 (Bcl-2), cleaved caspase-9, and cleaved poly ADP ribose polymerase (PARP) levels but increased the expression level of Bcl-2-associated X (Bax). Furthermore, CDDO-Me induced autophagy in both Ec109 and KYSE70 cells via suppression of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. There were interactions between the autophagic and apoptotic pathways in Ec109 and KYSE70 cells subject to CDDO-Me treatment. CDDO-Me also scavenged reactive oxygen species through activation of the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) pathway in Ec109 and KYSE70 cells. CDDO-Me inhibited cell invasion, epithelial-mesenchymal transition, and stemness in Ec109 and KYSE70 cells. CDDO-Me significantly downregulated E-cadherin but upregulated Snail, Slug, and zinc finger E-box-binding homeobox 1 (TCF-8/ZEB1) in Ec109 and KYSE70 cells. CDDO-Me significantly decreased the expression of octamer-4, sex determining region Y-box 2 (Sox-2), Nanog, and B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1), all markers of cancer cell stemness, in Ec109 and KYSE70 cells. Taken together, these results indicate that CDDO-Me is a promising anticancer agent against ESCC. Further studies are warranted to explore the molecular targets, efficacy and safety of CDDO-Me in the treatment of ESCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Danusertib (Danu) is a pan-inhibitor of Aurora kinases and a third-generation breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (Bcr-Abl) tyrosine kinase inhibitor, but its antitumor effect and underlying mechanisms in the treatment of human breast cancer remain elusive. This study aimed to investigate the effects of Danu on the growth, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT) and the molecular mechanisms in human breast cancer MCF7 and MDA-MB-231 cells. The results demonstrated that Danu remarkably inhibited cell proliferation, induced apoptosis and autophagy, and suppressed EMT in both breast cancer cell lines. Danu arrested MCF7 and MDA-MB-231 cells in G2/M phase, accompanied by the downregulation of cyclin-dependent kinase 1 and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53. Danu significantly decreased the expression of B-cell lymphoma-extra-large (Bcl-xl) and B-cell lymphoma 2 (Bcl-2), but increased the expression of Bcl-2-associated X protein (Bax) and p53-upregulated modulator of apoptosis (PUMA), and promoted the cleavage of caspases 3 and 9. Furthermore, Danu significantly increased the expression levels of the membrane-bound microtubule-associated protein 1A/1B-light chain 3 (LC3-II) and beclin 1 in breast cancer cells, two markers for autophagy. Danu induced the activation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases 1 and 2 (Erk1/2) and inhibited the activation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in breast cancer cells. Treatment with wortmannin (a phosphatidylinositol 3-kinase inhibitor) markedly inhibited Danu-induced activation of p38 MAPK and conversion of cytosolic LC3-I to membrane-bound LC3-II. Pharmacological inhibition and small interfering RNA-mediated knockdown of p38 MAPK suppressed Akt activation, resulting in LC3-II accumulation and enhanced autophagy. Pharmacological inhibition and small interfering RNA-mediated knockdown of Erk1/2 also remarkably increased the level of LC3-II in MCF7 cells. Moreover, Danu inhibited EMT in both MCF7 and MDA-MB-231 cells with upregulated E-cadherin and zona occludens protein 1 (ZO-1) but downregulated N-cadherin, zinc finger E-box-binding homeobox 1 (TCF8/ZEB1), snail, slug, vimentin, and β-catenin. Notably, Danu showed lower cytotoxicity toward normal breast epithelial MCF10A cells. These findings indicate that Danu promotes cellular apoptosis and autophagy but inhibits EMT in human breast cancer cells via modulation of p38 MAPK/Erk1/2/Akt/mTOR signaling pathways. Danu may represent a promising anticancer agent for breast cancer treatment. More studies are warranted to fully delineate the underlying mechanisms, efficacy, and safety of Danu in breast cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ovarian cancer is a leading killer of women, and no cure for advanced ovarian cancer is available. Alisertib (ALS), a selective Aurora kinase A (AURKA) inhibitor, has shown potent anticancer effects, and is under clinical investigation for the treatment of advanced solid tumor and hematologic malignancies. However, the role of ALS in the treatment of ovarian cancer remains unclear. This study investigated the effects of ALS on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition (EMT), and the underlying mechanisms in human epithelial ovarian cancer SKOV3 and OVCAR4 cells. Our docking study showed that ALS, MLN8054, and VX-680 preferentially bound to AURKA over AURKB via hydrogen bond formation, charge interaction, and π-π stacking. ALS had potent growth-inhibitory, proapoptotic, proautophagic, and EMT-inhibitory effects on SKOV3 and OVCAR4 cells. ALS arrested SKOV3 and OVCAR4 cells in G2/M phase and induced mitochondria-mediated apoptosis and autophagy in both SKOV3 and OVCAR4 cell lines in a concentration-dependent manner. ALS suppressed phosphatidylinositol 3-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways but activated 5'-AMP-dependent kinase, as indicated by their altered phosphorylation, contributing to the proautophagic activity of ALS. Modulation of autophagy altered basal and ALS-induced apoptosis in SKOV3 and OVCAR4 cells. Further, ALS suppressed the EMT-like phenotype in both cell lines by restoring the balance between E-cadherin and N-cadherin. ALS downregulated sirtuin 1 and pre-B cell colony enhancing factor (PBEF/visfatin) expression levels and inhibited phosphorylation of AURKA in both cell lines. These findings indicate that ALS blocks the cell cycle by G2/M phase arrest and promotes cellular apoptosis and autophagy, but inhibits EMT via phosphatidylinositol 3-kinase/Akt/mTOR-mediated and sirtuin 1-mediated pathways in human epithelial ovarian cancer cells. Further studies are warranted to validate the efficacy and safety of ALS in the treatment of ovarian cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1-D3)-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.