38 resultados para human activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concept of life balance implies that there is some optimal time allocation between the various forms o(human activity we engage in each day. So life balance can be measured by the size of the discrepancy between how we should and how we do allocate our time.
If someone chooses to spend all of their discretionary time writing poetry, is this a balanced life? Many people would say no. They would judge such a life to be imbalanced because life is full of competing demands, and writing poetry all day means that other aspects of life are neglected.
But is this just an imposed value judgment, or does the concept of a balanced life have deeper meaning? The answer must lie with whatever we use to measure the outcome. Any conclusion that balance is better than imbalance must be based on empirical evidence. So, what should be measured?

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assessment of the direct and indirect requirements for energy is known as embodied energy analysis. For buildings, the direct energy includes that used primarily on site, while the indirect energy includes primarily the energy required for the manufacture of building materials. This thesis is concerned with the completeness and reliability of embodied energy analysis methods. Previous methods tend to address either one of these issues, but not both at the same time. Industry-based methods are incomplete. National statistical methods, while comprehensive, are a ‘black box’ and are subject to errors. A new hybrid embodied energy analysis method is derived to optimise the benefits of previous methods while minimising their flaws. In industry-based studies, known as ‘process analyses’, the energy embodied in a product is traced laboriously upstream by examining the inputs to each preceding process towards raw materials. Process analyses can be significantly incomplete, due to increasing complexity. The other major embodied energy analysis method, ‘input-output analysis’, comprises the use of national statistics. While the input-output framework is comprehensive, many inherent assumptions make the results unreliable. Hybrid analysis methods involve the combination of the two major embodied energy analysis methods discussed above, either based on process analysis or input-output analysis. The intention in both hybrid analysis methods is to reduce errors associated with the two major methods on which they are based. However, the problems inherent to each of the original methods tend to remain, to some degree, in the associated hybrid versions. Process-based hybrid analyses tend to be incomplete, due to the exclusions associated with the process analysis framework. However, input-output-based hybrid analyses tend to be unreliable because the substitution of process analysis data into the input-output framework causes unwanted indirect effects. A key deficiency in previous input-output-based hybrid analysis methods is that the input-output model is a ‘black box’, since important flows of goods and services with respect to the embodied energy of a sector cannot be readily identified. A new input-output-based hybrid analysis method was therefore developed, requiring the decomposition of the input-output model into mutually exclusive components (ie, ‘direct energy paths’). A direct energy path represents a discrete energy requirement, possibly occurring one or more transactions upstream from the process under consideration. For example, the energy required directly to manufacture the steel used in the construction of a building would represent a direct energy path of one non-energy transaction in length. A direct energy path comprises a ‘product quantity’ (for example, the total tonnes of cement used) and a ‘direct energy intensity’ (for example, the energy required directly for cement manufacture, per tonne). The input-output model was decomposed into direct energy paths for the ‘residential building construction’ sector. It was shown that 592 direct energy paths were required to describe 90% of the overall total energy intensity for ‘residential building construction’. By extracting direct energy paths using yet smaller threshold values, they were shown to be mutually exclusive. Consequently, the modification of direct energy paths using process analysis data does not cause unwanted indirect effects. A non-standard individual residential building was then selected to demonstrate the benefits of the new input-output-based hybrid analysis method in cases where the products of a sector may not be similar. Particular direct energy paths were modified with case specific process analysis data. Product quantities and direct energy intensities were derived and used to modify some of the direct energy paths. The intention of this demonstration was to determine whether 90% of the total embodied energy calculated for the building could comprise the process analysis data normally collected for the building. However, it was found that only 51% of the total comprised normally collected process analysis. The integration of process analysis data with 90% of the direct energy paths by value was unsuccessful because: • typically only one of the direct energy path components was modified using process analysis data (ie, either the product quantity or the direct energy intensity); • of the complexity of the paths derived for ‘residential building construction’; and • of the lack of reliable and consistent process analysis data from industry, for both product quantities and direct energy intensities. While the input-output model used was the best available for Australia, many errors were likely to be carried through to the direct energy paths for ‘residential building construction’. Consequently, both the value and relative importance of the direct energy paths for ‘residential building construction’ were generally found to be a poor model for the demonstration building. This was expected. Nevertheless, in the absence of better data from industry, the input-output data is likely to remain the most appropriate for completing the framework of embodied energy analyses of many types of products—even in non-standard cases. ‘Residential building construction’ was one of the 22 most complex Australian economic sectors (ie, comprising those requiring between 592 and 3215 direct energy paths to describe 90% of their total energy intensities). Consequently, for the other 87 non-energy sectors of the Australian economy, the input-output-based hybrid analysis method is likely to produce more reliable results than those calculated for the demonstration building using the direct energy paths for ‘residential building construction’. For more complex sectors than ‘residential building construction’, the new input-output-based hybrid analysis method derived here allows available process analysis data to be integrated with the input-output data in a comprehensive framework. The proportion of the result comprising the more reliable process analysis data can be calculated and used as a measure of the reliability of the result for that product or part of the product being analysed (for example, a building material or component). To ensure that future applications of the new input-output-based hybrid analysis method produce reliable results, new sources of process analysis data are required, including for such processes as services (for example, ‘banking’) and processes involving the transformation of basic materials into complex products (for example, steel and copper into an electric motor). However, even considering the limitations of the demonstration described above, the new input-output-based hybrid analysis method developed achieved the aim of the thesis: to develop a new embodied energy analysis method that allows reliable process analysis data to be integrated into the comprehensive, yet unreliable, input-output framework. Plain language summary Embodied energy analysis comprises the assessment of the direct and indirect energy requirements associated with a process. For example, the construction of a building requires the manufacture of steel structural members, and thus indirectly requires the energy used directly and indirectly in their manufacture. Embodied energy is an important measure of ecological sustainability because energy is used in virtually every human activity and many of these activities are interrelated. This thesis is concerned with the relationship between the completeness of embodied energy analysis methods and their reliability. However, previous industry-based methods, while reliable, are incomplete. Previous national statistical methods, while comprehensive, are a ‘black box’ subject to errors. A new method is derived, involving the decomposition of the comprehensive national statistical model into components that can be modified discretely using the more reliable industry data, and is demonstrated for an individual building. The demonstration failed to integrate enough industry data into the national statistical model, due to the unexpected complexity of the national statistical data and the lack of available industry data regarding energy and non-energy product requirements. These unique findings highlight the flaws in previous methods. Reliable process analysis and input-output data are required, particularly for those processes that were unable to be examined in the demonstration of the new embodied energy analysis method. This includes the energy requirements of services sectors, such as banking, and processes involving the transformation of basic materials into complex products, such as refrigerators. The application of the new method to less complex products, such as individual building materials or components, is likely to be more successful than to the residential building demonstration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

  Remote human activity monitoring is critical and essential in physiotherapy with respect to the skyrocketing healthcare expenditure and the fast aging population. One of frequently used method to monitor human activity is wearing inertial sensors since it is low-cost and accurate. However, the measurements of those sensors are able only to estimate the orientation and rotation angles with respect to actual movement angles, because of differences in the body’s co-ordination system and the sensor’s co-ordination system. There were numerous studies being conducted to improve the accuracy of estimation, though there is potential for further discussions on improving accuracy by replacing heavy algorithms to less complexity. This research is an attempt to propose an adaptive complementary filter for identifying human upper arm movements. Further, this article discusses a feasibility of upper arm rehabilitation using the proposed adaptive complementary filter and inertial measurement sensors. The proposed algorithm is tested with four healthy subjects wearing an inertial sensor against gold standard, which is the VICON system. It demonstrated root mean squared error of 8.77◦ for upper body limb orientation estimation when compared to gold standard VICON optical motion capture system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermogalvanic cells are capable of converting waste heat (generated as a by-product of almost all human activity) to electricity. These devices may alleviate the problems associated with the use of fossil fuels to meet the world's current demand for energy. This review discusses the developments in thermogalvanic systems attained through the use of nano-carbons as the electrode materials. Advances in cell design and electrode configuration that improve performance of these thermo converters and make them applicable in a variety of environments are also summarized. It is the aim of this review to act as a channel for further developments in thermogalvanic cell design and electrode engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The world’s oceans cover about 70% of our planet. To safeguard the delicate ecological and environmental functions of the oceans and their remarkable biodiversity, networks of marine protected areas are being created. In some of these areas, human activity is restricted to non-exploitative activities and in others it is managed in a sustainable way. Australia is at the forefront of marine conservation, with one of the largest systems of marine protected areas in the world.Big, Bold and Blue: Lessons from Australia’s Marine Protected Areas captures Australia’s experience, sharing important lessons from the Great Barrier Reef and many other extraordinary marine protected areas. It presents real-world examples, leading academic research, perspectives on government policy, and information from indigenous sea country management, non-governmental organisations, and commercial and recreational fishing sectors. The lessons learnt during the rapid expansion of Australia’s marine protected areas, both positive and negative, will aid and advise other nations in their own marine conservation efforts.The book is ideal reading for marine planners and managers across the globe; academic institutions where research on marine environments occur; government agencies across the world implementing and creating policy around MPA development; non-government organisations involved in lobbying for MPA expansion; and fisheries agencies and industry stakeholders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the effect of exercise on protein kinase C (PKC) activity and localization in human skeletal muscle, eight healthy men performed cycle  ergometer exercise for 40 min at 76±1% the peak pulmonary O2 uptake (VO2peak), with muscle samples obtained at rest and after 5 and 40 min of exercise. PKC expression, phosphorylation and activities were examined by immunoblotting and in vitro kinase assays of fractionated and whole tissue preparations. In response to exercise, total PKC activity was slightly higher at 40 min in an enriched membrane fraction, and using a pSer-PKC-substrate motif antibody it was revealed that exercise increased the serine phosphorylation of a ∼50 kDa protein. There were no changes in conventional PKC (cPKC) or PKCθ activities; however, atypical PKC (aPKC) activity was ∼70% higher at 5 and 40 min, and aPKC expression and Thr410/403 phosphorylation were unaltered by exercise. There were no effects of exercise on the abundance of PKCα, PKCδ, PKCθ and aPKC within cytosolic or enriched membrane fractions of skeletal muscle. These data indicate that aPKC, but not cPKC or PKCθ, are activated by exercise in contracting muscle suggesting a potential role for aPKC in the regulation of skeletal muscle function and metabolism during exercise in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exercise increases skeletal muscle insulin action but the underlying mechanisms mediating this are equivocal. In mouse skeletal muscle, prior exercise enhances insulin-stimulated insulin receptor substrate-2 (IRS-2) signaling (Diabetes 2002;51:479-83), but it is unknown if this also occurs in humans. Hyperinsulinemic-euglycemic clamps were performed on 7 untrained males at rest and immediately after 60 minutes of cycling exercise at ~75% Vo2peak. Muscle biopsies were obtained at basal, immediately after exercise, and at 30 and 120 minutes of hyperinsulinemia. Insulin infusion increased (P < .05) insulin receptor tyrosine phosphorylation similarly in both the rest and exercise trials. Under resting conditions, insulin infusion resulted in a small, but non–statistically significant increase in IRS-2–associated phosphatidylinositol 3 (PI 3)–kinase activity over basal levels. Exercise per se decreased (P < .05) IRS-2–associated PI 3–kinase activity. After exercise, insulin-stimulated IRS-2–associated PI 3–kinase activity tended to increase at 30 minutes and further increased (P < .05) at 120 minutes when compared with the resting trial. Insulin increased (P < .05) Akt Ser473 and GSK-3α/β Ser21/Ser9 phosphorylation in both trials, with the response tending to be higher in the exercise trial. In conclusion, in the immediate period after an acute bout of exercise, insulin-stimulated IRS-2 signaling is enhanced in human skeletal muscle.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: This study investigated the effects of endurance training status and sex differences on skeletal muscle Na+,K+-pump mRNA expression, content and activity. Methods: Forty-five endurance-trained males (ETM), 11 recreationally active males (RAM), and nine recreationally active females (RAF) underwent a vastus lateralis muscle biopsy. Muscle was analysed for Na+,K+-pump α1, α2, α3, β1, β2 and β3 isoform mRNA expression (real-time reverse transcription-polymerase chain reaction), content ([3H]-ouabain-binding site) and maximal activity (3-O-methylfluorescein phosphatase, 3-O-MFPase). Results: ETM demonstrated lower α1, α3, β2 and β3 mRNA expression by 74%, 62%, 70% and 82%, respectively, than RAM (P < 0.04). In contrast, [3H]-ouabain binding and 3-O-MFPase activity were each higher in ETM than in RAM, by 16% (P < 0.03). RAM demonstrated a 230% and 364% higher α3 and b3 mRNA expression than RAF, respectively (P < 0.05), but no significant sex differences were found for α1, α2, β1 or β2 mRNA, [3H]-ouabain binding  or 3-O-MFPase activity. No significant correlation was found between years of endurance training and either [3H]-ouabain binding or 3-O-MFPase activity. Significant but weak correlations were found between the number of training hours per week and 3-O-MFPase activity (r = 0.31, P < 0.02) and between incremental exercise V O2(peak) and both   [3H]-ouabain binding (r = 0.33, P < 0.01) and 3-O-MFPase activity (r = 0.28, P < 0.03). Conclusions: Isoform-specific differences in Na+,K+-pump mRNA expression were found with both training status and sex differences, but only training status influenced Na+,K+-pump content and maximal activity in human skeletal muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, diagnostic tests for mesenteric ischaemia and infarction are inadequate due to poor sensitivity and specificity. In addition, many potential markers appear too late to be clinically useful. At present, definitive diagnosis can only be made at the time of surgery, which is not ideal as surgery is often to be avoided in critically ill and elderly patients. A clinically useful, minimally invasive test is likely to decrease the currently very high mortality rate and allow monitoring of 'at risk' patients during their hospital stay. A two-dimensional electrophoresis based proteomic approach was undertaken to assess plasma protein differences between patients with surgically confirmed bowel infarction and control Intensive Care patients. The major protein differences were found to be members or variants of acute phase proteins. Serum amyloid A showed the largest difference between the two patient groups, and this protein was investigated in greater depth. An analysis was performed to compare the diagnostic ability of several commonly used indicators of critical illness and bowel infarction with serum amyloid A and phospholipase A2. Although none of the variables were ideal for clinical use, plasma phospholipase A2 activity showed the best discriminatory power, as determined by Receiver Operating Characteristic curves. From a review of the literature, phospholipase AI (PLA2) appeared to be increased in the bowel as a result of ischaemia and infarction. In one patient, matched tissues were obtained, and PLA2 activity was found to be significantly higher in infarcted bowel tissue compared to ischaemic bowel tissue. PLA2 activity was significantly greater in bowel lumen than tissue, suggesting that the protein was being released, and may enter the circulation. PLA2 activity was increased in the plasma of bowel infarction patients compared with control patients, though the difference was not significant. The phospholipase activity exhibited a number of similarities to typical phospholipase A2 proteins, but also showed a number of inconsistent characteristics. For this reason, we wished to identify the protein responsible for the increased phospholipase activity in infarcted human bowel. The PLA2 activity in human bowel could not be abolished by immunoprecipitation of the PLA2 isoforms IIA (well described in bowel) and V (a closely related isoform). To investigate these proteins, a native urea protein gel devised for snake venom phospholipase A2 was modified for use with mammalian phospholipase AI. The modified gel was used to show that the protein with phospholipase activity from infarcted gut was different from normal gut PLA2 and type IIA PLA2. A number of extensions were devised for these native gels and were found to be useful both in this investigation and for venom investigations. Protein purification was undertaken to identify the protein responsible for the increased phospholipase activity in infarcted bowel. Protein was purified from infarcted human bowel using a number of techniques that exploited unusual characteristics of the protein. The purification techniques each retained the native activity of the protein and the purification could therefore be monitored with a phospholipid hydrolysis assay at each stage. The protein identified by mass spectrometry was an excellent match for cyclophilin B, an inflammatory protein that had previously been identified in rat bowel at the mRNA level (Hasel et al, 1991, Kainer & Doris, 2000). As the purification progress had been monitored throughout with a phospholipid hydrolysis assay, cyclophilin B was an unexpected identification, as it is not known to have phospholipase activity. Cyclophilin B was removed from the highly purified samples via immunoprecipitation and this process abolished all phospholipase activity. The addition of cyclosporin A, (the pharmaceutical ligand of cyclophilin B), did not effect the phospholipase activity. Cyclophilin B protein was found in normal and infarcted human bowel using Western blotting. Cyclophilin B protein also appeared to be present in the bowel lumen and plasma of several patients with bowel infarction, but not in control patients. Immunohistochemistry confirmed the ubiquitous nature of cyclophilin B that had been reported by other groups. This project has investigated the use of two dimensional gel electrophoresis based proteomics to identify proteins present in the plasma of patients with confirmed bowel infarction and control intensive care patients. The major protein classes observed were members of the acute phase proteins, which highlights the need for pre-fractionation of plasma to identify lower abundance, disease associated proteins. A series of potential plasma markers were compared using Receiver Operating Characteristic Curves. Although no ideal marker was clear from this analysis, phospholipase activity appeared to warrant further investigation. Phospholipase activity was investigated in human infarcted bowel. Protein purification identified cyclophilin B as a bowel protein that showed unusual phospholipid hydrolysing activity. Cyclophilin B is a ubiquitous protein in intestinal cell types in both normal and infarcted tissue. There appears to be release of cyclophilin B into bowel lumen and plasma under conditions of mesenteric ischaemia and infarction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diabetes is quickly reaching epidemic proportions, with 216 million people worldwide predicted to be diagnosed with the disease by 2010. While it appears that the expression of the insulin responsive glucose transporter isoform 4 (GLUT4) is not reduced in diabetic populations, overexpression of GLUT4 exclusively in muscle enhances insulin action and improves glucose homeostasis. Consequently, understanding the regulation of GLUT4 expression is considered important in identifying potential therapeutic targets for the treatment and management of insulin resistance and related disorders such as type 2 diabetes. Using transgenic mice, we have identified two conserved regions on the GLUT4 gene promoter that are required for normal skeletal muscle GLUT4 expression. The first region contains a binding site for the myocyte enhancer factor 2 (MEF2) transcription factor, between –464 and –473 bp, and it appears that a MEF2A/D heterodimer binds this sequence. However, this site is not sufficient to support full GLUT4 expression, and another region between –712 and –742 bp, termed Domain 1, is also required. A novel transcription factor, named the GLUT4 enhancer factor (GEF), was found to bind to this region. It appears that MEF2 and GEF physically interact in order to induce GLUT4 expression. A single bout of exercise is sufficient to increase both GLUT4 transcription and mRNA abundance. However, the molecular mechanisms underpinning this response remain largely unexplored, particularly in human skeletal muscle. Therefore, the aim of this study was to determine whether a single, acute bout of exercise increases the DNA-binding activity of both MEF2 and GEF in human skeletal muscle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle.