279 resultados para chloride corrosion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual, electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode. These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media. This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes, namely, the wire beam electrode(WBE). Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion of steel grinding balls is a major recurrent cost for mill operators concerned with the production gold. Subsequently, the use of corrosion inhibitors in production fluids, which is typically at pH >9, is an attractive and economical option. This study reports on the corrosion wear of steel grinding balls under alkaline/oxygen conditions and in presence of cyanide. A fundamental study on the influence of several inorganic-based inhibitors (i.e., nitrite, chromate, silicate, hexametaphosphate) on the corrosion rate of carbon steel was undertaken. Subsequently, the corrosion performances of various inhibitors were evaluated in stirred vessels. Corrosion rates were determined via mass loss and electrochemical methods (i.e., linear polarisation, Tafel). It was observed that inhibitors based upon chromate provide superior protection under the conditions investigated in this study. In lime treated, high chloride waters, chromate gave over 80% protection at levels of 10 100 ppm with no evidence of pitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemically integrated multi-electrode array namely the wire beam electrode (WBE) has been used to characterize the behavior of cerium chloride (CeCl3) and lanthanum chloride (LaCl3) in inhibiting localized corrosion of AA2024-T3 and AA1100. CeCl3 has been found to inhibit AA2024-T3 corrosion in 0.005 M sodium chloride (NaCl) solution by suppressing galvanic corrosion activities and by creating a large number of insignificant anodes. It has also been shown to inhibit localized corrosion of AA1100 in 0.5 M NaCl solution by promoting the random distribution of minor anodes. LaCl3 has been found to inhibit localized corrosion of AA2024-T3 at 1000 ppm, although its efficiency dropped significantly when its concentration decreased to 500 ppm. The addition of CeCl3 and LaCl3 to corrosion testing cells at later stages was unable to effectively suppress existing corrosion anodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical parameters including maximum anodic current density, total anodic current density, the number of anodic sites and the localised corrosion intensity index have been extracted from galvanic current distribution maps that were acquired using an electrochemically integrated multielectrode array, namely, the wire beam electrode. Experiments have been carried out to demonstrate the application of these new electrochemical parameters for characterising localised corrosion inhibition of metals. A typical corrosion inhibitor, potassium dichromate, was found to affect localised corrosion processes in various ways, for instance in sodium chloride solutions, it was found to inhibit localised corrosion of aluminium alloy AA 2024-T3 by suppressing galvanic corrosion activities occurring over the alloy surface, whereas it was found to control localised corrosion of AA 1100 by creating a large number of minor anodes distributing randomly over the metal surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that cerium diphenyl phosphate (Cedpp) 3 is a very effective inhibitor of corrosion of aluminium alloys in chloride solutions. This paper describes the results of further studies using electrochemical and constant immersion corrosion tests to compare the effectiveness of Ce(dpp) 3 and Mischmetal diphenyl phosphate Mm(dpp) 3 as inhibitors of corrosion pitting on AA7075-T651 aluminium alloy. The results shows that both Ce(dpp) 3 and Mm(dpp) 3 are excellent inhibitors of pitting corrosion of this alloy in very aggressive environments of continuously aerated 0.1M and 1.0M sodium chloride (NaCl) solutions. Polarisation tests indicate that these compounds act as a cathodic inhibitors by reducing the rate of the oxygen reduction reaction, which results in a decreased corrosion current density and a separation of the corrosion potential from the pitting potential. This inhibition is thought to be due to the formation of a surface film consisting of rare earth metal oxide, aluminium oxide and a cerium-aluminium organo-phosphate complex. Surface analysis data from scanning electron microscopy and X-ray Energy Dispersive Spectroscopy show the complex nature of this protective film. This work further develops our understanding about the mechanisms through which these complex films form, and how inhibition occurs in the presence of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.©2014 Institute of Materials, Minerals and Mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AA2024-Tx is one of the most common high-strength aluminium alloys used in the aerospace industry. This article reviews current understanding of the microstructure of sheet AA2024-T3 and chronicles the emergence of new compositions for constituent particles as well as reviews older literature to understand the source of the original compositions. The review goes on to summarise older and more recent studies on corrosion of AA2024-T3, drawing attention to areas of corrosion initiation and propagation. It pays particular attention to modern approaches to corrosion characterisation as obtained through microelectrochemical techniques and physicochemical characterisation, which provide statistical assessment of factors that contribute to corrosion of AA2024. These approaches are also relevant to other alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Elsevier B.V. All rights reserved. A self-assembled multilayer (SAM) from sodium lauroyl sarcosinate (SLS) and glutamic acid (GLU) is formed on copper surface. Its inhibition ability against copper corrosion is examined by electrochemical analysis and weight loss test. In comparison to SAM formed by just SLS or GLU, a synergistic effect is observed when the coexistence of SLS and GLU in SAM. The SLS/GLU SAM has an acicular multilayer structure, and SAM prepared under the condition of 5 mM SLS and 1 mM GLU shows the best protection efficiency. PM6 calculation reveals that the synergistic effect stems from interactions between SLS, GLU and cupric ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two quinoline derivatives, 8-aminoquinoline (8-AQ) and 8-nitroquinoline (8-NQ), have been used as inhibitors to examine their corrosion protection effect on AA5052 aluminium alloy in 3% NaCl solution. The weight-loss and electrochemical measurement have indicated that 8-AQ and 8-NQ play as anodic inhibitor to retard the anodic electrochemical process. SEM/EDS analysis clearly shows that 8-AQ and 8-NQ form a protective film on the AA5052 alloy surface. Density functional theory (DFT) calculation confirmed the formation of strong hybridization between the p-orbital of reactive sites in the inhibitor molecules and the sp-orbital of the Al atom. 8-aminoquinoline and 8-nitroquinoline may be useful as effective corrosion inhibitors for aluminium alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Institute of Materials, Minerals and Mining. Published by Maney on behalf of the Institute. This paper describes an interesting attempt to quantitatively evaluate the corrosion behaviour of base oils using a novel approach based on electrochemical techniques. The present study evaluates the corrosion behaviour of biodegradable base oils with and without additives in an aqueous chloride solution using electrochemical measurements. Potentiodynamic polarisation and electrochemical impedance spectroscopy techniques were used to quantitatively determine the corrosion behaviour of these oils, and the results were compared to the conventional immersion tests. Both these electrochemical measurements were carried out in a three-electrode system where AS1020 mild steel alloy was used as a working electrode in a purpose made pipette cell. The results obtained from the electrochemical measurements help to evaluate the best biodegradable base oil for formulating eco-friendly industrial lubricants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the heat treatment on the corrosion behaviour of amorphous Al88Ni6La6 made by melt-spun has been investigated by electrochemical measurements. Heat treatment was carried out at 523 K and 673 K for 4 min and 15 min respectively. The evolution of the crystallization process after annealing was identified by differential scanning calorimeter (DSC) as well as X-ray diffraction. The XRD patterns show that the structure of samples heat-treated at higher temperature changes towards a crystal state. The results obtained from the polarization curves reveal that all Al88Ni6La6 alloys exhibit spontaneously passivated behaviour. Furthermore, it is noted that the partially crystallized alloy has the best corrosion resistance in comparison with as-spun amorphous and fully crystallized alloys, while the fully crystallized sample shows deterioration in the corrosion resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of crystallization on the corrosion resistance of a  Cu52.5Ti30Zr11.5Ni6 bulk amorphous alloy in 1 mol/L HCl, and 6 mol/L NaOH solutions were studied. The amorphous alloy was identified by  differential thermal analysis(DSC) and by X-ray diffraction(XRD). The partially and fully crystallized alloys were prepared by controlling the annealing  temperatures at 738 and 873 K for 1 and 12 min, respectively, and the corrosion resistances of those annealed alloys were compared with that of the amorphous alloy by immersion test and potentiodynamic measurements in 1 mol/L HCl and 6 mol/L NaOH solutions. The results show that the  partially crystallized alloy exhibits high corrosion resistance, whereas full crystallization results in deteriorated corrosion resistance compared with that of the as-cast amorphous alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the crystal structure of the title compound, C10H10N3+·Cl-·[P(O)(OH)2H], the chloride ion and phosphorous acid form a one-dimensional hydrogen-bonded chain, while the 2-(2-pyridylamino)pyridinium cations form a second chain through [π]-[π] stacking. The two parallel chains are connected via a PO...H-N hydrogen bond and a weak pyridinium-to-chloride interaction.