31 resultados para aluminum casthouse metal flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum particles (Al) were added to polypropylene (PP) in the presence of poly ethylene glycol (PEG) and polypropylene-graft-maleic anhydride to produce composites. The composites were then melt-spun into a mono filament and tested for tensile properties, diameter evenness and morphology. Melt rheological properties of Al/PP composites were studied in linear viscoelastic response regions. It was observed that level of dispersion of aluminum particles within a polypropylene composite fiber could be improved by incorporating polyethylene glycol. The improvement of dispersion led to an improvement in the fibers mechanical properties through a reduction of the coefficient of variation of fiber diameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vickers and nanoindentationswere carried out on an annealed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the annealed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with the structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the annealed alloywas much lower than that in the as-cast alloy. The load-displacement curve of nanoindentation test for the annealed alloy exhibited a more flat serrated flow. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the annealed sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the mixing parameters on the synthesis of Al–SiCp reinforced metal matrix composites (MMCs) by the stir casting technique is investigated through a water model. The effects of some important mixing parameters such as impeller blade angle, rotating speed, direction of impeller rotation and effect of baffles are investigated and optimized. The results have shown that the axial concentration variation of natural graphite during stirring in the presence of four vertical baffles is 1.0 wt% against in the absence of baffles it is increased to 2.3 wt%. The variations observed in natural graphite concentration in water during mixing are in close agreement with the earlier modeling and limited experimental studies reported on the real molten aluminum–SiC system. Semi-empirical correlations arrived at between the dimensionless numbers for stirred water – natural graphite slurries are Po = Re−0.0545 Fr−1.099 and Po = Re−0.0219 Fr−1.0382 for clockwise and counter clockwise rotation respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An aluminum/MgAl2O4 in situ metal matrix composite has been synthesized using silica gel containing B98% SiO2 in an Al–5Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation have been discussed in detail. A transition phase of composition between MgO and MgAl2O4 has been detected in the SEM-EDS analysis of the particles extracted from the composite by a 25% NaOH solution. This confirms the gradual transformation of MgO to MgAl2O4 by the reaction 3SiO2(s)12MgO(s)14Al(l)-2MgAl2O4(s)13Si(l). The stoichiometry, n, of MgAl2O4 has been found to sustain close to 1 and the crystallite growth of MgAl2O4 has been stopped at DB30 nm in the composites held at 7501C up to 10 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low current density preconditioning process, which produces an improved lithium transport mechanism is created by the action of charge flow through a plastic crystal electrolyte (figure). A reduction in cell polarisation at high applied current density is demonstrated which approaches the rates required for these electrolytes to be used in practical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation is on the microstructure evolution and hardness of powder metallurgically processed Al- 0.5 wt.%Mg base 10 wt.% short steel fiber reinforced composites. The 0.38 wt.% C short steel fibers of average diameter 50µm and 500-800µm length were nitrided and chromized in a fluid bed furnace. Nitriding was carried out at 525°C for 90, 30 and 5 min durations. Chromizing was performed at 950°C for 53 and 7 min durations, using thermal reactive deposition (TRD) and diffusion technique. The treated fibers and resulting reaction interfaces were characterized using metallographic, microhardness and XRD techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the magneto-hydrodynamic forces generated due to the external magnetic field and current density distribution within the cell (current in cell linings) is important in the optimization of cell dynamics. It is well documented that these factors play a crucial role in establishing the metal-pad stability of the cell. Conventional cells use the cathode-collector-bar assembly to carry the current through molten aluminium, the cathode and the steel collector-bar to nearest external bus. The electrical conductivity of the steel is so poor relative to the molten aluminium that the outer third of the collector bar carries the maximum load, which in turn increases the horizontal components of the current within the cell. Previous studies have modelled improvement in the cell instability through external magnetic compensation by redistributing current in the cathode busbar. Very little to date has been published on work to improve the current distribution within the cell. In this work, the current distribution in an aluminium electrolysis cell with copper collector-bar was predicted using finite element modelling. A 2D cross-section of a commercial cell was used under steady conditions of electrical fields in anode, electrolyte, molten aluminium and copper cathode-assembly. Different shapes and sizes of the cathode assembly are also considered to optimise the distribution of current throughout the cathode lining. The findings indicated that the copper-bar of similar size to steel could save voltage up to 150 mV. There is a reduction of more than 70% in peak current density value due to the copper inserts. The predicted trends of current distribution show a good agreement with previously published data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual, electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode. These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media. This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes, namely, the wire beam electrode(WBE). Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new stable aluminum aminoterephthalate system contains octameric building blocks that are connected by organic linkers to form a 12-connected net (see picture). The structure adopts a cubic centered packing motive in which octameric units replace individual atoms, thus forming distorted octahedral (red sphere) and tetrahedral cages (green spheres) with effective accessible diameters of 1 and 0.45 nm, respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.©2014 Institute of Materials, Minerals and Mining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this article is to investigate the drilling of carbon fiber-reinforced plastic (CFRP) composite/metal stack-ups to have a details picture of the developments in this complex area. The forces and torque, chip shape, surface finish and geometry, and tool material and tool wear for drilling composite/metal stack-ups have been analyzed in details in addition to drilling mechanism of CFRP. The relation between input and output parameters was discussed and the trend of input parameters for damage free and tight tolerance holes has been investigated based on the literature. The main findings are (i) heat, built-up edge and chips generated from drilling of metallic layers damages CFRP surface, (ii) order of material layers affects the drilling outcomes significantly, (iii) coatings and step-shape on the cutting tool improves the tool performance, (iv) tool materials should be selected based on the material of metallic layer, (v) chipping, adhesion, abrasion and attrition are main tool wear mechanisms during machining of CFRP/metal stacks and (vi) application of coolant improves the machinability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240 μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2 μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salt and solvent permeations across ion-exchange membranes used in electro-dialysis are directly related to the membrane material structure and chemistry. Although primarily used for aqueous effluents desalination, electro-dialysis was recently shown to be a promising technology for industrial wastewater and co-solvent mixtures purification. The harsh working conditions imposed by these liquid effluents, including high suspended solids, require the development of more chemically and mechanically resistant membranes. In this study, commercial porous stainless steel media filters (240. μm thick) were used as a backbone to prepare hybrid ion-exchange membranes by casting ion-exchange materials within the porous metal structure. The surface of the metal reinforcements was modified by plasma treatment prior to sol-gel silane grafting to improve the interface between the metal and the ion-exchange resins. The morphology of novel hybrid materials and the interface between the metal fibers and the ion-exchange material have been characterized using techniques such as scanning electron microscopy and FTIR mapping. The thickness of the silane coating was found to lie between 1 and 2. μm while water contact angle tests performed on membrane surfaces and corrosion test behaviors revealed the formation of a thin passivating oxide layer on the material surfaces providing anchoring for the silane grafting and adequate surface energy for the proper incorporation of the ion-exchange material. The hybrid membranes desalination performance were then tested in a bench top electro-dialysis cell over a range of flow rate, current densities and salt concentration conditions to evaluate the ability of the novel hybrid materials to desalinate model streams. The performance of the hybrid membranes were benchmarked and critically compared against commercially available membranes (Selemion™). Although the salt transfer kinetics across the hybrid ion-exchange composite membranes were shown to be comparable to that of the commercial membranes, the low porosity of the stainless steel reinforcements, around 60%, was shown to impede absolute salt permeations. The hybrid ion-exchange membranes were however found to be competitive at low current density and low flow velocity desalination conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to study the strain rate effect on single crystal of aluminum (99.999% purity), aluminum single crystals are fabricated and subjected to uniaxial compression loading at quasi-static and dynamic strain rates, i.e., from 10-4 s-1 to 1000 s-1. The orientation dependence is also investigated with single slip or multi slip. The stress-strain curves of pure Al single crystals along two orientations and at different strain rates are obtained after measuring initial orientation using the Laue Back-Reflection technique. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used to simulate the deformations along two orientations under various strain-rates. The classical and two newly developed single crystal plasticity models are used in the investigation. The simulation results of these models are compared to experimental results in order to study their abilities to predict finite plastic deformation of single crystalline metal over a wide strain rate range.