20 resultados para X-RAY STRUCTURE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tensonometer for stretching metal foils has been constructed for the study of strain broadening in X-ray diffraction line profiles. This device, which is designed for use on powder diffractometers and was tested on Station 2.3 at Daresbury Laboratory, allows in situ measurements to be performed on samples under stress. It can be used for data collection in either transmission or reflection modes using either symmetric or asymmetric diffraction geometries. As a test case, measurements were carried out on an 18 µm-thick copper foil experiencing strain levels of up to 5% using both symmetric reflection and symmetric transmission diffraction. All the diffraction profiles displayed peak broadening and asymmetry which increased with strain. The measured profiles were analysed by the fundamental-parameters approach using the TOPAS peak-fitting software. All the observed broadened profiles were modelled by convoluting a refineable diffraction profile, representing the dislocation and crystallite size broadening, with a fixed instrumental profile predetermined using high-quality LaB6 reference powder. The deconvolution process yielded `pure' sample integral breadths and asymmetry results which displayed a strong dependence on applied strain and increased almost linearly with applied strain. Assuming crystallite size broadening in combination with dislocation broadening arising from f.c.c. a/2〈110〉{111} dislocations, the variation of mechanical property with strain has been extracted. The observation of both peak asymmetry and broadening has been interpreted as a manifestation of a cellular structure with cell walls and cell interiors possessing high and low dislocation densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray crystallography is essentially a form of very high resolution microscopy. It enables us to visualize protein structures at the atomic level and enhances our understanding of protein function. Specifically we can study how proteins interact with other molecules, how they undergo conformational changes, and how they perform catalysis in the case of enzymes. Armed with this information we can design novel drugs that target a particular protein, or rationally engineer an enzyme for a specific industrial process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (∼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radioprotective effect of Polyalthia longifolia was studied in mice. P. longifolia treatment showed improvement in mice survival compared to 100% mortality in the irradiated mice. Significant increases in hemoglobin concentration, and red blood cell, white blood cell and platelet counts were observed in the animals pretreated with leaf extract. Pre-irradiation administration of P. longifolia leaf extract also increased the CFU counts of the spleen colony and increased the relative spleen size. A dose-dependent decrease in lipid peroxidation levels was observed in the animals pretreated with P. longifolia. However, although the animals pretreated with P. longifolia exhibited a significant increase in superoxide dismutase and catalase activity, the values remained below normal in both liver and the intestine. Pre-irradiation administration of P. longifolia also resulted in the regeneration of the mucosal crypts and villi of the intestine. Moreover, pretreatment with P. longifolia leaf extract also showed restoration of the normal liver cell structure and a significant reduction in the elevated levels of ALT, AST and bilirubin. These results suggested the radioprotective ability of P. longifolia leaf extract, which is significant for future investigation for human applications in developing efficient, economically viable, non-toxic natural and clinically acceptable novel radioprotectors.