96 resultados para Steel corrosion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400–1500 cm−1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM–cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Corrosion rate measurements based on weight loss (i.e., mild steel immersed for seven days in 0.01 M NaCl) and linear polarization resistance (LPR) techniques have shown that even low concentrations (200 ppm) of cerium and lanthanum cinnamates are able to significantly inhibit corrosion. Of all the compounds investigated in this work Ce(4-methoxycinnamate)3· 2 H2O and La(4-methoxycinnamate)3· 2 H2O compounds exhibited the greatest inhibition and, in comparison with the component inhibitors, a synergy was clearly observed. The mechanism of corrosion inhibition was investigated using cyclic potentiodynamic polarization (CPP) measurements. The results suggest that La(4-nitrocinnamate)3· 2 H2O and Ce(4-methoxycinnamate)3· 2 H2O behave as mixed inhibitors and improve the resistance of steel against localized attack.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The syntheses and structures of the novel Ce–Fe bimetallic complexes [{Fe(sal)2(bpy)}2Ce(NO3)(H2O)3]·EtOH and [{Fe(sal)2(bpy)}4Ce2(H2O)11][salH]2·EtOH·3H2O (salH2 = salicylic acid) suggest Fe3+–sal2− units and Ce–OC(R)O–Fe bridging contribute to the formation of corrosion inhibitive layers on steel surfaces exposed to [Ce(salH)3(H2O)].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nature of deposits on mild steel surfaces formed by exposure to corrosive and inhibiting solutions has been examined by attenuated total reflectance spectroscopy. For cerium-based inhibitors, e.g. CeCl3 the formation of cerium-containing coatings was detected whilst the cerium carboxylate Ce(sal)3 (sal=salicylate), which combines the Ce3+ with the known organic inhibitor sal, was shown to involve substantial deposition of both cerium and a salicylate species. These results, combined with corrosion inhibition data for the respective inhibitor compounds clearly indicate a synergistic corrosion mechanism for Ce(sal)3 which underpins the improved performance of this corrosion inhibitor in comparison to the individual components (i.e. Na(sal) or CeCl3).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inhibitor concentration depth profiles for concrete samples treated with a proprietary migratory corrosion inhibitor (of the Cortec MCI range) are presented. The treated concrete was cored and these cores were then sectioned and crushed before being immersed in distilled water to extract the available inhibitor. The amine concentrations were quantified using an ammonium-sensing electrode and were then related to the inhibitor concentration present. The inhibitor examined, reported to contain a combination of volatile amines and amino carboxylate compounds, was found to readily diffuse through concrete. The inhibitor was subjected to a 5-year trial and found to be effective in suppressing corrosion of steel reinforcement in the presence of high chloride concentrations. The concentration profiles indicate that only relatively low concentrations of inhibitor were required to achieve inhibition in this case.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential of lanthanum 4-hydroxy cinnamate to inhibit filiform corrosion on coated mild steel (AS1020) was investigated. The effectiveness and behaviour of this rare-earth inhibitor was examined with filiform corrosion scribe tests and Potentiodynamic Polarisation. The filiform scribe tests showed that lanthanum 4-hydroxy cinnamate, as a pigment in a coating, inhibited the initiation and propagation of both delamination and filiform corrosion on coated steel. The polarisation tests demonstrated that at pH 3, no significant inhibition was observed but a secondary passivation effect was present. At pH 9, inhibition on coated steel was found to be greater than that of the inhibition found at pH 6. The models of filament initiation and growth proposed by previous authors are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Corrosion protection by lanthanum hydroxy cinnamate (La(4OH-cin)3) in a polyurethane based varnish coating for mild steelhas been investigated. Filiform scribe tests, energy-dispersive X-ray spectroscopy (EDXS) and potentiodynamic polarisation (PP)techniques have been powerful tools to better understand the corrosion process at defects and under the coating. Filiform scribetests showed that La(4OH-cin)3, as a pigment in a coating, inhibited the initiation and propagation of both delamination and filiformcorrosion (FFC) on coated steel. The PP experiments provided an insight into the fundamental mechanism of FFC. The resultssuggest that La(4OH-cin)3 behaves as a mixed inhibitor and stifles the initiation and propagation of FFC. In this paper, the theory ofdelamination leading to FFC and the likely mechanism of inhibition by the La(4OH-cin)3 will be discussed.