45 resultados para Solid-liquid interfaces


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to image electrochemical processes in situ using nuclear magnetic resonance imaging (MRI) offers exciting possibilities for understanding and optimizing materials in batteries, fuel cells and supercapacitors. In these applications, however, the quality of the MRI measurement is inherently limited by the presence of conductive elements in the cell or device. To overcome related difficulties, optimal methodologies have to be employed. We show that time-efficient three dimensional (3D) imaging of liquid and solid lithium battery components can be performed by Sectoral Fast Spin Echo and Single Point Imaging with T1 Enhancement (SPRITE), respectively. The former method is based on the generalized phase encoding concept employed in clinical MRI, which we have adapted and optimized for materials science and electrochemistry applications. Hard radio frequency pulses, short echo spacing and centrically ordered sectoral phase encoding ensure accurate and time-efficient full volume imaging. Mapping of density, diffusivity and relaxation time constants in metal-containing liquid electrolytes is demonstrated. 1, 2 and 3D SPRITE approaches show strong potential for rapid high resolution (7)Li MRI of lithium electrode components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of new electrolyte materials based on a molecular plastic crystal doped by different iodide salts together with iodine have been prepared and characterized by thermal analysis, ionic conductivity, electrochemical and solid-state NMR diffusion measurements. In these materials, the plastic crystal phase of succinonitrile acts as a good matrix for the quaternary ammonium based iodides and iodine and appears to act in some cases as a solid-state “solvent” for the binary dopants. The materials were prepared by mixing the components in the molten state with subsequent cooling into the plastic crystalline state. This resulted in waxy-solid electrolytes in the temperature range from − 40 to 60 °C. The combination of structural variation of the cations, and fast redox couple diffusion (comparable with liquid-based electrolytes), as well as a high ionic conductivity of up to 3 × 10− 3 S cm− 1 at ambient temperature, make these materials very attractive for potential use in solid-state photoelectrochemical cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High current-carrying capacity and rapid, liquidlike diffusion were achieved in a dye-sensitized solar cell (DSSC) based on the plastic-crystalline electrolyte succinonitrile and the I/I3 redox couple (see diagram). This could lead to the development of true solid-state DSSCs without conventional organic-liquid electrolytes, which can cause problems with long-term device stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids (ILs) based on trihexyltetradecylphosphonium coupled with either diphenylphosphate or bis(trifluoromethanesulfonyl)amide have been shown to react with magnesium alloy surfaces, leading to the formation a surface film that can improve the corrosion resistance of the alloy. The morphology and microstructure of the magnesium surface seems critical in determining the nature of the interphase, with grain boundary phases and intermetallics within the grain, rich in zirconium and zinc, showing almost no interaction with the IL and thereby resulting in a heterogeneous surface film. This has been explained, on the basis of solid-state NMR evidence, as being due to the extremely low reactivity of the native oxide films on the intermetallics (ZrO2 and ZnO) with the IL as compared with the magnesium-rich matrix where a magnesium hydroxide and/or carbonate inorganic surface is likely. Solid-state NMR characterization of the ZE41 alloy surface treated with the IL based on (Tf)2N− indicates that this anion reacts to form a metal fluoride rich surface in addition to an organic component. The diphenylphosphate anion also seems to undergo an additional chemical process on the metal surface, indicating that film formation on the metal is not a simple chemical interaction between the components of the IL and the substrate but may involve electrochemical processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts were synthesised. The spectroscopic, physical and electrochemical characteristics of this family of salts have been investigated with respect to potential usage as ionic solvents and electrolytes. The lowest melting point among the family is 64°C for the N-methyl-N-propylpyrrolidinium tetrafluoroborate (P13BF4). This is sufficiently low to enable this salt to be useful as an ionic liquid in chemical synthesis involving reactions above 70°C. Most of the compounds exhibit one or more solid–solid transitions below the melting point, this behaviour is thought to indicate the existence of plastic crystal phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of N-methyl-N-alkylpyrrolidinium nonafluoro-1-butanesulfonate salts were synthesised and characterised. The thermophysical characteristics of this family of salts have been investigated with respect to potential use as ionic liquids and solid electrolytes. N-Methyl-N-butylpyrrolidinium nonafluoro-1-butanesulfonate (p1,4NfO) has the lowest melting point of the family, at 94 °C. Electrochemical analysis of p1,4 NfO in the liquid state shows an electrochemical window of ~6 V. All compounds exhibit one or more solid–solid transitions at sub-ambient temperatures, indicating the existence of plastic crystal phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of Li-ion batteries with liquid electrolytes at elevated temperatures (above 60°C) is limited due to the decomposition of the electrolyte. Stable solid state electrolytes can solve this problem, but the conductivity of these electrolytes are relatively low, the interfacial contacts with the electrodes are poor, and the charge transfer kinetics in the electrodes are limited. Solutions for these problems by using composite electrodes and electrolytes have been investigated and the results are described. A new concept for making all-solid-state Li-ion batteries that can be applied in the temperature range between room temperature and about 150°C will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N,N-Dimethylpyrrolidinium hydroxide (P11OH·4H2O) was found to exhibit high ionic conductivity in the solid state (7 × 10−3 S cm−1 at 25°C) and unusual thermal properties, and 2H solid state NMR measurements indicate liquid-like mobility of the deuterium species in the solid state of P11OD·4.5D2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel lithium polyelectrolyte–ionic liquid systems, using poly(lithium 2-acrylamido-2-methyl propanesulfonate) and its copolymer with N-vinyl formamide, have been developed in this work. The ionic liquid used in this work is from a novel family of methanesulfonate ionic liquids, specifically N-hexyl-N,N,N-tributyl ammonium methanesulfonate, which is chosen because of the similarity with the anionic functionality of the polymer. The ionic liquid thereby acts as a good solvating medium for the polyelectrolyte. It was found that the copolymer-based polyelectrolyte–ionic liquid system exhibits two to three times higher conductivity than that of the homopolymer system. The results of solid-state 7Li-NMR have shown that lithium cations in the copolymer system are mobile whereas in the homopolymer, only a fraction appears to be mobile even at 80 °C. This supports the hypothesis that separation of the charged groups on the polymer backbone via the co-monomer encourages the dissociation of lithium cations from the sulfonate groups bonded to the polymer chains, and hence, results in an increase in conductivity of the polyelectrolyte material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barak Obama, orator extraordinaire, the embodiment of the American success myth, 'global' prophet of the adoring masses and multi-media auratic figure, is the leading illustration of what is the expanded nexus of celebrity, spectacle and politics in the age of what Zygmund Bauman refers to as liquid modernity or 'the era of disembedding without re-embedding' (2001, p. 89). This is the era in which a traumatic sense of fear, uncertainty and transience defines one's relationship to the nation state, and social (media) centre, as they lose their economic singularity and cultural coherency and cohesiveness in a world system ever inter-connected and driven increasingly, incessantly by supra-corporate concerns and spectacular celebrity-based presentations. In this world of 'togetherness dismantled' (Bauman 2003, p. 119), the disenfranchised individual feels they cannot meet the trans-capital intensive, show reel-like, boundaryless world on solid ground. That adoration, or a liquefied definition of it, is key to this imagined and affective communion between Obama and those who adore him, suggests that there is a terrible wanting and simultaneous waning to those who look for such rootedness and the promise of deliverance in the celebrity political figure. This is a charismatic authority figure who promises this solidity yet streams in and out of material view, unable to fix or properly propagate their communion beyond triumphant spectacularism. Their 'lightness of being' (ibid, p. 123-9) is powerfully seductive and decidedly empty because it echoes the instantaneous (instant) way in which all lives are increasingly led. I will suggest that liquid celebrity is one of the cornerstones of liquid modernity, and Barack Obama is the epitome of this 'runniness'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity.

Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct measurements of a long-range force between charged solid surfaces in a nonpolar liquid are presented for the first time. Measurements were made between mica surfaces in solutions of the anionic surfactant sodium di-2-ethylhexylsulfosuccinate (AOT) at millimolar concentrations in n-decane using a surface force apparatus which has been modified to improve its sensitivity for detecting a weak and long-range force. Modifications include a magnetic drive system, the use of a weak cantilever spring with the apparatus mounted in a vertical configuration, and a detailed consideration of the interference optics to allow accurate measurements of surface separations up to several micrometers. The results show a repulsion that is well fitted by theoretical curves based on a model in which only counterions enter the calculation, in other words, in the absence of a reservoir of ions in the solvent. Fitting the theory to the data allows an estimate of the mica surface charge density of ∼1 mC/m2. A mechanism for surface charging of mica in this solution is proposed, which includes a role for trace amounts of water that are inevitably present and adsorbed surface aggregates of AOT. The relevance of the results to previously observed charge stabilization of colloids in nonaqueous solvents is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of the force as a function of distance between two solids separated by a liquid crystal film give information on the structure of the film. We report such measurements for two molecularly smooth surfaces of mica separated by the nematic liquid crystal 4'-n-pentyl 4-cyanobiphenyl (5CB) in both the planar and homeotropic orientations at room temperature. The force is determined by measuring the deflection of a spring supporting one of the mica pieces, while an optical technique is used to measure the film thickness to an accuracy of ± (0.1-0.2) nm. The technique also allows the refractive indices of the nematic to be measured, and hence a determination of the average density and order parameter of the liquid crystal film as a function of its thickness. Three distinct forces were measured, each reflecting a type of ordering of the liquid crystal near the mica surfaces. The first one results from elastic déformation in the liquid crystal ; it was only observed in a twisted planar sample where the 5CB molecules are oriented in different directions at the two mica surfaces. The second, measured in both the planar and homeotropic orientations, is attributed to an enhanced order parameter near the surfaces. Both of these are monotonic repulsive forces measurable below 80 nm. Finally, there is a short-range force which oscillates as a function of thickness, up to about six molecular layers, between attraction and repulsion. This results from ordering of the molecules in layers adjacent to the smooth solid surface. It is observed in both the planar and homeotropic orientations, and also in isotropic liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results of a theoretical study of the effect of surface deformation on a macroscopic system composed of a solid surface interacting with a fluid drop through electrostatic double-layer forces. The analysis involves numerically solving a Laplace equation suitably modified to describe the shape of a liquid drop subjected to a repulsive double-layer force. The latter is evaluated in nonlinear mean-field theory. Some analytical results are also given. The results indicate that although deformation need not be significant on the macroscopic scale, its effect on the interaction is significant and modifies the picture usually presented in DLVO theory. The decay length of the exponential repulsion deviates marginally from the Debye length, dependent on the interfacial tension of the drop. More significantly, at separations where the double-layer force becomes comparable to the internal pressure of the drop, the net force between the two bodies, the local radius of curvature of the drop, and the amount of deformation grow abruptly. The results of this work are relevant to emulsion stability, micelle, vesicle, and cell interactions, and recent experiments on bubble-particle interaction.