24 resultados para Recombinaison homologue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complimentary to a sequence encoding a molecule or derivative or homologue thereof wherein said nucleic acid molecule is expressed in a larger amount in one or both hypothalamus tissue or muscle tissue of obese animals compared to lean animals or in fed animals compared to fasted animals. Nucleic acid sequences are disclosed. It is proposed to use the expression products of such nucleic acids as modulators and/or monitors of physiological processes associated with obesity, anorexia, weight maintenance, impaired muscle development, diabetes and/or metabolic energy levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complimentary to a sequence encoding a molecule or derivative or homologue thereof wherein said nucleic acid molecule is expressed in a larger amount in one or both hypothalamus tissue or muscle tissue of obese animals compared to lean animals or in fed animals compared to fasted animals. Nucleic acid sequences are disclosed. It is proposed to use the expression products of such nucleic acids as modulators and/or monitors of physiological processes associated with obesity, anorexia, weight maintenance, impaired muscle development, diabetes and/or metabolic energy levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complimentary to a sequence encoding a molecule or derivative or homologue thereof wherein said nucleic acid molecule is expressed in a larger amount in one or both hypothalamus tissue or muscle tissue of obese animals compared to lean animals or in fed animals compared to fasted animals. Nucleic acid sequences are disclosed. It is proposed to use the expression products of such nucleic acids as modulators and/or monitors of physiological processes associated with obesity, anorexia, weight maintenance, impaired muscle development, diabetes and/or metabolic energy levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The α-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host's reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (α-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia α-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia α-DsbA1 possesses a second disulfide that is highly conserved in α-proteobacterial DsbAs but not in other DsbAs. The α-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of α-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA polymerase II (pol II) transcription termination requires co-transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA-binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted -propeller-forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C-terminal domain (CTD) of pol II in vitro and in a two-hybrid test in vivo. Furthermore, transcriptional run-on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3'-end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-molecular-mass rhoptry complex of Plasmodium falciparum consists of three proteins, rhoptry-associated protein 1 (RAP1), RAP2, and RAP3. The genes encoding RAP1 and RAP2 are known; however, the RAP3 gene has not been identified. In this study we identify the RAP3 gene from the P. falciparum genome database and show that this protein is part of the low-molecular-mass rhoptry complex. Disruption of RAP3 demonstrated that it is not essential for merozoite invasion, probably because RAP2 can complement the loss of RAP3. RAP3 has homology with RAP2, and the genes are encoded on chromosome 5 in a head-to-tail fashion. Analysis of the genome databases has identified homologous genes in all Plasmodium spp., suggesting that this protein plays a role in merozoite invasion. The region surrounding the RAP3 homologue in the Plasmodium yoelii genome is syntenic with the same region in P. falciparum; however, there is a single gene. Phylogenetic comparison of the RAP2/3 protein family from Plasmodium spp. suggests that the RAP2/3 duplication occurred after divergence of these parasite species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we report the overexpression, purification, and characterization of the transcriptional activator fumarate and nitrate reductase regulator from the pathogenic bacterium Neisseria meningitidis (NmFNR). Like its homologue from Escherichia coli (EcFNR), NmFNR binds a 4Fe-4S cluster, which breaks down in the presence of oxygen to a 2Fe-2S cluster and subsequently to apo-FNR. The kinetics of NmFNR cluster disassembly in the presence of oxygen are 2–3× slower than those previously reported for wild-type EcFNR, but similar to constitutively active EcFNR* mutants, consistent with earlier work in which we reported that the activity of FNR-dependent promoters in N. meningitidis is only weakly inhibited by the presence of oxygen (Rock, J. D., Thomson, M. J., Read, R. C., and Moir, J. W. (2007) J. Bacteriol. 189, 1138–1144). NmFNR binds to DNA containing a consensus FNR box sequence, and this binding stabilizes the iron-sulfur cluster in the presence of oxygen. Partial degradation of the 4Fe-4S cluster to a 3Fe-4S occurs, and this form remains bound to the DNA. The 3Fe-4S cluster is converted spontaneously back to a 4Fe-4S cluster under subsequent anaerobic reducing conditions in the presence of ferrous iron. The finding that binding to DNA stabilizes FNR in the presence of oxygen such that it has a half-life of ∼30 min on the DNA has implications for our appreciation of how oxygen switches off FNR activatable genes in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription factors of the plant-specific apetala2/ethylene response factor (AP2/ERF) family control plant secondary metabolism, often as part of signalling cascades induced by jasmonate (JA) or other elicitors. Here, we functionally characterized the JA-inducible tobacco (Nicotiana tabacum) AP2/ERF factor ORC1, one of the members of the NIC2-locus ERFs that control nicotine biosynthesis and a close homologue of ORCA3, a transcriptional activator of alkaloid biosynthesis in Catharanthus roseus. ORC1 positively regulated the transcription of several structural genes coding for the enzymes involved in nicotine biosynthesis. Accordingly, overexpression of ORC1 was sufficient to stimulate alkaloid biosynthesis in tobacco plants and tree tobacco (Nicotiana glauca) root cultures. In contrast to ORCA3 in C. roseus, which needs only the GCC motif in the promoters of the alkaloid synthesis genes to induce their expression, ORC1 required the presence of both GCC-motif and G-box elements in the promoters of the tobacco nicotine biosynthesis genes for maximum transactivation. Correspondingly, combined application with the JA-inducible Nicotiana basic helix–loop–helix (bHLH) factors that bind the G-box element in these promoters enhanced ORC1 action. Conversely, overaccumulation of JAZ repressor proteins that block bHLH activity reduced ORC1 functionality. Finally, the activity of both ORC1 and bHLH proteins was post-translationally upregulated by a JA-modulated phosphorylation cascade, in which a specific mitogen-activated protein kinase kinase, JA-factor stimulating MAPKK1 (JAM1), was identified. This study highlights the complexity of the molecular machinery involved in the regulation of tobacco alkaloid biosynthesis and provides mechanistic insights about its transcriptional regulators.