68 resultados para Rainbow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to gain a better understanding of the metabolic fate of dietary fatty acids in rainbow trout, with a specific focus on the effect of varying total C18 PUFA level. Fish were fed a control fish oil based diet or one of five experimental fish oil deprived diets formulated with a constant 1/1 ratio of 18:3n-3/18:2n-6 and varying total C18 PUFA levels for a period of 7 weeks. The transcriptional changes of the Δ-6 desaturase and elongase enzymes in direct comparison to in vivo fatty acid bioconversion, estimated using the whole-body fatty acid balance method, were analysed. The main findings were that i) the efficiency of Δ-6 desaturase was negatively affected by C18 PUFA availability, but the total apparent in vivo enzyme activity was directly proportional to C18 PUFA substrate availability; ii) Δ-6 desaturase had a greater affinity towards n-3PUFA than n-6PUFA; iii) excessive C18 PUFA substrate availability could limit the availability of Δ-6 desaturase to act on C24 fatty acid; iv) the elimination of dietary n-3LC-PUFA (enzyme products) up-regulated the transcription rate of Δ-6 desaturase; but v) the total apparent in vivo enzyme activity was directly and positively affected by substrate availability, and not product presence/absence nor the extent of the enzyme transcription rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B6) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to test the hypothesis that the efficiency of a finishing period can be improved by reducing the initial fat content of fish fillets, by means of a period of food deprivation. Two groups of rainbow trout (Oncorhynchus mykiss) were fed for an 18-week grow-out period on a vegetable oil-based diet (VO) or a fish oil-based diet (FO). VO fed fish were then split into two sub groups: one (VO/FO) was shifted to the FO diet for 8 weeks, whilst the other (UF/FO) was deprived of food (unfed) for 2 weeks and then fed the FO diet for the remaining 6 weeks. The control treatment (FO/FO) was represented by fish continuously fed FO. The subsequent reduction of total fat in the UF/FO treatment was then responsible for a much faster recovery towards a FO-like fatty acid profile, validating the proposed hypothesis. However, the modification of the fatty acid composition of fish fillets during the feed withholding period, coupled with the postponement of the finishing diet, resulted in only minor beneficial effects of this strategy, and the loss of potential weight gain. However, the n-3 LC-PUFA content in UF/VO fish fillets was significantly higher than fish subjected to the VO/FO treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The implementation of alternative lipid sources for use in aquaculture is of considerable interest globally. However, the possible benefit of using stearidonic acid (SDA)–rich fish oil (FO) alternatives has led to scientific confusion. Two hundred and forty rainbow trout (Oncorhynchus mykiss) were fed 1 of 4 diets (3 replicate tanks/treatment) containing either FO, linseed oil (LO), echium oil, or mixed vegetable oil (72% LO, 23% sunflower oil, and 6% canola oil) as the dietary lipid source (16.5%) for 73 d to investigate the competition and long-chain PUFA (LC-PUFA) biosynthesis between the fatty acid substrates α-linolenic acid (ALA) and SDA. SDA was more efficiently bioconverted to LC-PUFA compared with ALA. However, when the dietary lipid sources were directly compared, the increased provision of C18 PUFA within the LO diet resulted in no significant differences in (n-3) LC-PUFA content compared with fish fed the other diets. This study therefore shows that, rather than the previously speculated substrate competition, the limiting process in the apparent in vivo (n-3) LC-PUFA biosynthesis appears to be substrate availability. Rainbow trout fed the SDA- and ALA-rich dietary lipid sources subsequently had similar significant reductions in (n-3) LC-PUFA compared with fish fed the FO diet, therefore providing no additional dietary benefit on (n-3) LC-PUFA concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we identify the size-dependent risk of winter starvation mortality as a strong selective pressure on age-0 rainbow trout (Oncorhynchus mykiss) that could promote the risk-taking behaviour and allocation of energy to lipids previously observed in young trout cohorts. Age-0 trout subjected to simulated winter starvation conditions gradually depleted lipid reserves to a critical minimum lipid content below which death occurred. Small fish with lower lipid content exhausted lipid reserves earlier, and experienced high mortality rates sooner, than larger fish with greater lipid content. Consequently, winter starvation endurance was dependent upon size-dependent lipid reserves and winter duration. To validate the laboratory findings in the field, we stocked several size classes of hatchery-raised trout with known lipid content at the start of winter into two experimental lakes, and estimated survival and lipid depletion at winter's end. Larger age-0 trout had greater initial lipid reserves than smaller trout. Individuals depleted most of their lipid reserves over the winter, and experienced mortality that ranged from just under 60% for the largest individuals to just over 90% of the smallest individuals. Many survivors had lipid contents near, but none were below, the minimum lipid content determined in the laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the neuroendocrine and cellular stress responses of diploid and triploid rainbow trout Oncorhynchus mykiss to transportation. Juvenile diploid and triploid rainbow trout (28 and 26 g/fish average weight, respectively) were stocked at 100 g/L in replicate 70-L tanks and subjected to transportation for an 8-h period. Subsequent levels of plasma cortisol and glucose and of cellular hepatic glutathione (GSH) and heat shock protein 70 (Hsp70) were similar between ploidy groups, indicating that triploid fish respond to transportation in much the same way as diploid fish. A stationary treatment was also included that involved confinement of experimental fish in similar tanks without transport to determine to what extent high-density containment contributed to the stress response in the absence of the noise and vibration of transport. Unexpectedly, fish in the stationary treatment had significantly higher plasma cortisol and glucose levels than the transported fish; however, this might be attributable to a confounding effect of hyperoxia, as oxygen levels fluctuated between 150% and 460% saturation in the stationary tank, while those in the transported tank remained within 100–200% saturation. We suggest that when long stops are necessary while transporting fish, water agitators be used to preclude the additional stress of excessive gas saturation. This may be particularly important for triploid fish, which had lower hepatic GSH levels than diploid fish as well as a low level of mortality in the stationary treatment, unlike the diploid fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine whether exposure of rainbow trout (Oncorhynchus mykiss) to water containing a stressed trout or skin extract from stressed and non-stressed trout would elicit a stress response in conspecifics. Juvenile rainbow trout were exposed for 1 hour to water containing a stressed fish, homogenized skin extracts from a non-stressed fish, skin extract from a stressed fish and water with none of these factors. The stress response was measured over a 24-h period (1, 6, 12, 24 h after exposure). Plasma cortisol levels increased at 12 h in fish exposed to water from a stressed fish and skin extract from a stressed fish. Plasma glucose and hepatic hsp70 levels were not affected by treatments. The results suggest that rainbow trout elicit a stress response when exposed to stress-related alarm cues released from conspecifics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally accepted that, in vertebrates, omega-3 (n-3) and omega-6 (n-6) poly-unsaturated fatty acids (PUFA) compete for ?-6 desaturase enzyme in order to be bioconverted into long-chain PUFA (LC-PUFA). However, recent studies into teleost fatty acid metabolism suggest that these metabolic processes may not conform entirely to what has been previously observed in mammals and other animal models. Recent work on rainbow trout has led us to question specifically if linoleic acid (LA, 18:2n-6) and ?-linolenic acid (ALA, 18:3n-3) (?-6 desaturase substrates) are in direct competition for access to ?-6 desaturase. Two experimental diets were formulated with fixed levels of ALA, while LA levels were varied (high and low) to examine if increased availability of LA would result in decreased bioconversion of ALA to its LC-PUFA products through substrate competition. No significant difference in ALA metabolism towards n-3 LC-PUFA was exhibited between diets while significant differences were observed in LA metabolism towards n-6 LC-PUFA. These results are evidence for minor if any competition between substrates for ?-6 desaturase, suggesting that, paradoxically, the activity of ?-6 desaturase on n-3 and n-6 substrates is independent. These results call for a paradigm shift in the way we approach teleost fatty acid metabolism. The findings are also important with regard to diet formulation in the aquaculture industry as they indicate that there should be no concern for possible substrate competition between 18:3n-3 and 18:2n-6, when aiming at increased n-3 LC-PUFA bioconversion in vivo.