40 resultados para Nanorods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterisation of nanorods of vanadium pentoxide, V(2)O(5), vanadium trioxide, V(2)O(3), vanadium dioxide, VO(2)(B), and vanadium nitride, VN, are presented, and their application in electrochemical supercapacitors and lithium-ion batteries is outlined. Specifically, a novel method for the preparation of V(2)O(5) nanorods is discussed. It involves ball milling as a first step and controlled annealing as a second step. Nanorods of V(2)O(5) can be converted into those of other vanadium-related phases by simple chemical reduction treatments. Such chemical transformations are pseudomorphic and often topotactic, that is, the resulting nanorods belong to a different chemical phase but tend to retain the original morphology and preferential crystal orientation dictated by parent V(2)O(5) crystals.

The corresponding properties of nanorods for their prospective application in electrochemical energy storage (lithium-ion batteries and electrochemical supercapacitors) are discussed. The synthesised V(2)O(5) nanorods possess a stable cyclic behaviour when they are used in a cathode of a lithium-ion battery and are suitable for use in an anode. VN nanorods synthesised by NH(3) reduction of V(2)O(5) were found to possess pseudocapacitive properties in aqueous electrolytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature ferromagnetism has been observed in Y-doped AlN (AlN:Y) nanorods. Our first-principle calculations have demonstrated that the ferromagnetism in AlN:Y is from Al vacancies and that the introduction of nonmagnetic rare-earth element Y into AlN can significantly reduce the formation energy of Al vacancy which leads to high Al vacancies responsible for the observed ferromagnetism in AlN:Y nanorods. These findings illustrate an efficient way to reduce the formation energy of cation vacancy by doping nonmagnetic elements, such as Y, leading to ferromagnetism in semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xueyang’s PhD research focused on the semiconductive nanomaterials for the application of dye-sensitized solar cells. After four years diligent study, she successfully synthesized a novel nanomaterials with controllable morphology to promote the solar cell performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One-dimensional (1D) nanomaterials including nanotubes, nanowires and nanorods have many new properties, functionalities and a large range of promising applications. A major challenge for these future industrial applications is the large-quantity production. We report that the ball milling and annealing process has the potential to achieve the mass production. Several examples including C, BN nanotubes and SiC, Zn nanowires are presented to demonstrate such capability. In addition, both size and structure of 1D nanomaterials can be controlled by varying processing conditions. New growth mechanisms involved in the process have been investigated and the high-energy ball milling has an important role in the formation of these 1D nanomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reports on the use of radially polarised beam in gold-nanorod-facilitated nonlinear microscopy and therapy. It has been found that the use of radially polarised beam can greatly reduce the energy fluence threshold for treating cancer cells labelled with gold nanorods. The slight distortion in the polarisation properties of the radially polarised beam after propagating through double-clad photonic crystal fibres makes it promising in the application of fibre-optic based endoscopic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-infrared laser-based microsurgery is promising for noninvasive cancer treatment. To make it a safe technique, a therapeutic process should be controllable and energy efficient, which requires the cancer cells to be identifiable and observable. In this work, for the first time we use a miniaturized nonlinear optical endomicroscope to achieve microtreatment of cancer cells labeled with gold nanorods. Due to the high two-photon-excited photoluminescence of gold nanorods, HeLa cells inside a tissue phantom up to 250 μm deep can be imaged by the nonlinear optical endomicroscope. This facilitates microsurgery of selected cancer cells by inducing instant damage through the necrosis process, or by stopping cell proliferation through the apoptosis process. The results indicate that a combination of nonlinear endomicroscopy with gold nanoparticles is potentially viable for minimally invasive cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present article describes a new titanium oxide‐based (TiO2) photocatalyst that shows promise for acceleration of dye degradation. A hierarchical TiO2 nanostructure comprising nanorods on‐nanofibres has been prepared using a sol–gel route and electrospinning. Calcination of electrospun nanobre mats was performed in air at 500 °C. The TiO2 nanofibre surface was then exploited as a ‘seeding ground’ to grow TiO2 nanorods by a solvothermal process in NaOH. The nanofibres had a diameter of approximately 100 nm while the nanorods were evenly distributed on the nanofibre surface with a mean diameter of around 50–80 nm. The hierarchical nanostructure showed enhanced photocatalytic activity when compared to pure TiO2 nanofibres. This improved efficiency in degrading methylene blue through the photocatalytic process was attributed to the larger specific surface area of the TiO2 nanostructures, as well as high surface‐to‐volume ratio and higher reactive surface resulting in enhanced surface adsorption and interfacial redox reaction.