35 resultados para Infrared emission spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanostructured poly(ε-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Determination of anabolic steroids often requires the use of elaborate techniques such as gas chromatography - mass spectrometry (GC-MS), gas liquid chromatography (GLC) and more recently high performance liquid chromatography (HPLC). Most of these methods employ derivatisation techniques prior to detection which makes them tedious and relatively time consuming. Other methods demand a great deal of skill. A simple and rapid analytical method, based on differential pulse polarography at a dropping mercury electrode has been developed for the determination of various anabolic steroids in a range of commercially available pharmaceutical preparations. Detailed investigation of the electrochemical behaviour of these steroids was made in order to elucidate the electrode processes involved, in addition to optimising the method. Several other analytical methods such as GC-MS, NMR, ultraviolet (UV), infrared (IR) spectroscopy were also used to confirm the products of the chemical and electrochemical reactions. Possible reactions are suggested. Various extraction procedures were examined for separation of selected steroids from the oil-based or pill matrix and their suitability for polarographic determination is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blends of poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP-b-PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self-assembled nanostructures of the P2VP-b-PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The citrus fruit processing industry generates substantial quantities of waste rich in phenolic substances, which is a valuable natural source of polyphenols (flavonoids) such as naringin and its disposal is becoming a major problem. In the US alone, the juice processing of oranges and grapefruit generates over 5 Mt of citrus waste every year. In the case of India, about 2.15 Mt of citrus peel out of 6.28 Mt of citrus fruits are produced yearly from citrus juice processing. In case of Australia, about 15-40% of citrus peel waste is generated by processing of citrus fruit (0.85 Mt). Thus Isolation of functional compounds (mostly flavanoids) and their further processing can be of interest to the food and pharmaceutical industry. This peel is rich in naringin and may be used for rhamnose production by utilizing α-L-rhamnosidase (EC 3.2.1.40), an enzyme that catalyzes the cleavage of terminal rhamnosyl groups from naringin to yield prunin and rhamnose. We recently purified recombinant α-L-rhamnosidase from E. coli cells using immobilized metal-chelate affinity chromatography (IMAC) and used it for naringin hydrolysis. The purified enzyme established hydrolysis of naringin extracted from citrus peel and thus endorses its industrial applicability for producing rhamnose. Infrared (IR) spectroscopy confirmed molecular characteristics of naringin extracted from citrus peel waste.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural wool/cellulose blends were prepared in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl) and the films were formed subsequently from the coagulated solutions. The wool/cellulose blend films show significant improvement in thermal stability compared to the coagulated wool and cellulose. Moreover, the blend films exhibited an increasing trend of tensile strength with increase in cellulose content in the blends which could be used for the development of wool-based materials with improved mechanical properties, and the elongations of the blends were considerably improved with respect to the coagulated films of wool and cellulose. It was found that there was hydrogen bonding interaction between hydroxyl groups of wool and cellulose in the coagulated wool/cellulose blends as determined by Fourier transform infrared (FTIR) spectroscopy. The ionic liquid was completely recycled with high yield and purity after the blend film was prepared. This work presents a green processing route for development of novel renewable blended materials from natural resource with improved properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of emulsification on the styrene-butadiene-styrene (SBS) chemically modified bitumens (CMBs) is studied by conventional tests, differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy. Compared to CMBs, modified bitumen emulsion residues (MBERs) exhibit higher temperature susceptibility, inferior resistant to cracking and deformation, lower elastic recovery and storage stability whereas these properties are improved substantially relative to base bitumens. DSC results show that the thermostability of CMBs decreased slightly after emulsification which indicate the emulsification exerts very little effect on the thermal property of CMBs. The FTIR results do not indicate any chemical reaction exists on CMBs during the emulsification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural phase transitions in hydrous Cs-exchanged natrolite (Cs-NAT-hyd) and anhydrous Cs-exchanged natrolite (Cs-NAT-anh) have been investigated as a function of pressure and temperature using micro-Raman scattering and synchrotron infrared (IR) spectroscopy with pure water as the penetrating pressure medium. The spectroscopic results indicate that Cs-NAT-hyd undergoes a reversible phase transition around 4.72 GPa accompanied by the discontinuous frequency shifts of the breathing vibrational modes of the four-ring and helical eight-ring units of the natrolite framework. On the other hand, we observe that Cs-NAT-anh becomes rehydrated at 0.76 GPa after heating to 100 °C and then transforms into two distinctive phases at 2.24 and 3.41 GPa after temperature treatments at 165 and 180 °C, respectively. Both of these high-pressure phases are characterized by the absence of the helical eight-ring breathing modes, which suggests the collapse of the natrolite channel and formation of dense high-pressure polymorphs. Together with the fact that these high-pressure phases are recoverable to ambient conditions, our results imply a novel means for radionuclide storage utilizing pressure and a porous material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural phase transitions in natrolite have been investigated as a function of pressure and different hydrostatic media using micro-Raman scattering and synchrotron infrared (IR) spectroscopy. Natrolite undergoes two reversible phase transitions at 0.86 and 1.53 GPa under pure water pressure medium. These phase transitions are characterized by the changes in the vibrational frequencies of four- and eight-membered rings related to the variations in the bridging T−O−T angles and the geometry of the elliptical eight-ring channels under pressure. Concomitant to the changes in the framework vibrational modes, the number of the O−H stretching vibrational modes of natrolite changes as a result of the rearrangements of the hydrogen bonds in the channels caused by a successive increase in the hydration level under hydrostatic pressure. Similar phase transitions were also observed at relatively higher pressures (1.13 and 1.59 GPa) under alcohol−water pressure medium. Furthermore, no phase transition was found up to 2.52 GPa if a lower volume ratio of the alcohol−water to natrolite was employed. This indicates that the water content in the pressure media plays a crucial role in triggering the pressure-induced phase transitions in natrolite. In addition, the average of the mode Grüneisen parameters is calculated to be about 0.6, while the thermodynamic Grüneisen parameter is found to be 1.33. This might be attributed to the contrast in the rigidity between the TO4 tetrahedral primary building units and other flexible secondary building units in the natrolite framework upon compression and subsequent water insertion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SiOx films have several advantages as an interlayer dielectric in electronic devices owing to the strong adhesion between SiOx and the substrate. In this study, the coating performance as a function of the N2O flow rate was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in an undisturbed environment. In addition, the coatings were examined by atomic force microscopy and Fourier transform infrared reflection spectroscopy. The SiOx films on a stainless-steel substrate showed the highest coating performance at a N2O flow rate of 120 sccm. This was attributed to the films having the lowest porosity value among those examined as a result of the fragmentation of SiO and SiO2 bonds and the improved surface roughness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluidized bed reactor chemical vapor deposition (FBR-CVD) has been used to enrich the surface of oxygen free high conductivity (OFHC) copper with titanium, silicon and aluminum. This technique enables the production of coherent and adherent intermetallic surface layers of uniform thickness and high hardness. The characterization of the coatings was performed using backscatter scanning electron microscopy (BS-SEM), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDOES) and micro-hardness. The tribological properties of the coatings in dry sliding contact with steel were evaluated by pin-on-disc wear testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT) is a mechanical peening process used to generate ultrafine grain surfaces on a metal. SMAT was carried out on pure magnesium using different attrition media (zirconia [ZiO2], alumina [Al2O3], and steel balls) to observe the effect on microstructure, surface residual stress, surface composition, and corrosion. Surface contamination from SMAT was characterized using glow discharge optical emission spectroscopy (GDOES). The SMAT process produced a refined grain structure on the surface of Mg but resulted in a region of elemental contamination extending ~10 μm into the substrate, regardless of the media used. Consequently, SMAT-treated surfaces showed an increased corrosion rate compared to untreated Mg, primarily through increased cathodic kinetics. This study highlights the issue of contamination resulting from the SMAT process, which is a penalty that accompanies the significant grain refinement of the surface produced by SMAT. This must be considered if attempting to exploit grain refinement for improving corrosion resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A three-step plasma treatment, including surface activation with argon, surface functionalization with oxygen and then thin film deposition using a pulsed plasma polymerization of hexamethyldisiloxane (HMDSO), was used in low-pressure plasma to improve the pilling resistance of knitted wool fabric. The pilling propensity of the treated samples was investigated and compared with the pilling propensity of untreated, argon activated and oxygen functionized samples and argon and oxygen plasma-treated samples that were afterwards subject to continuous wave plasma polymerization of HMDSO. With the three-step treatment, a pilling grade of four was achieved for the treated wool fabric, while that of untreated and other plasma-treated was two and three, respectively. For the three-step plasma-treated sample, a uniform HMDSO polymer coating of 300 nm thickness was obtained; X-ray photoelectron spectroscopy (XPS) showed the presence of the silicone element, and Fourier transform infrared (FTIR) spectroscopy confirmed the chemical structure of the coating. No apparent differences were found in the whiteness index between the treated and untreated wool knits, but there was deterioration in the bursting strength and handle of the plasma-treated wool samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA[U+05F3]s.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although many approaches have been employed to enhance thermal stability of PVA, developing a facile and effective strategy remains highly attractive. Herein, we demonstrate a highly effective approach to strikingly improve thermal stability of PVA by selecting the types of multiamines molecules to tune the hydrogen-bond crosslink density. Results show that only adding 0.5 wt% of 2,4,5,6-tetraaminopyrimidine can make the initial degradation temperature (Ti) and maximum degradation temperature (Tmax) of PVA increase by ~55 °C and 98 °C due to the formation of 3D physically H-bond crosslinked network, resulting in superior thermal stability property to those of PVA nanocomposites. Moreover, thermal stability strongly depends on the H-bond crosslink density, and Ti and Tmax basically obey the linear hydrogen-bond relations despite some deviations. This work opens up a novel biological methodology for creating thermally stable polymeric materials.