49 resultados para Finite mixture modelling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In steels with TRIP-effect, a phase transformation from the retained-austenite to martensite occurs during forming, and it significantly affects hardening behaviours. Such an effect is sensitive to the amount of strain as well as the temperature variation. For materials with a strong TRIP-effect, new forming techniques are needed to develop that can lead to lighter and stronger components in automotive industry. This paper presents a coupled thermo-mechanical finite element modelling and simulation of a warm deep drawing of austenitic stainless steel (including a TRIP-effect) using LS-DYNA and temperature effect on forming process of such materials is investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, analytical models of pure bending are developed to simulate a particular type of bend test and to determine possible errors arising from approximations used in analyzing experimental data. Analytical models proposed for steels include a theoretical solution of pure bending and a series of finite element models, based on the von Mises yield function, are subjected to different stress and strain conditions. The results show that for steel sheets the difference between measured and calculated results of the moment-curvature behaviour is small and the numerical results from the finite element models indicate that experimental results obtained from the test are acceptable in the range of the pure bending operation. Further for magnesium alloys, which exhibit unsymmetrical yielding, the algorithm of the yield function with a linear isotropic hardening model is implemented by programming a user subroutine in Abaqus for bending simulations of magnesium. The simulations using the proposed user subroutine extract better results than those using the von Mises yield function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanical behaviours of metal foams greatly depend on their cell topology, including cell shape, cell size etc. as well as relative density and material properties of the cell wall. However, the cell shape effect on the mechanical behaviours of such materials appears to be ignored in previous research. In this paper, both analytic and finite element models are developed and employed to investigate the effect of cell shape on the mechanical behaviour of open-cell magnesium alloy (AZ91) foams under compression, including deformation modes and failure modes. For numerical modelling, both two-dimensional (2-D) and three-dimensional (3-D) finite element models are developed to predict the compressive behaviours of typical open-cell metal foams and capture the deformation modes and failure mechanisms. Two typical cell shapes i.e. cubic and diamond are taken into consideration. To validate these models, the analytic and numerical results are compared to the experimental data. Both the numerical and experimental data indicate that the cell shape significantly affects the compression behaviour of open-cell metal foams. In general, numerical results from the three-dimensional solid-element model show better agreement with the experimental results than those from other finite element models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the magneto-hydrodynamic forces generated due to the external magnetic field and current density distribution within the cell (current in cell linings) is important in the optimization of cell dynamics. It is well documented that these factors play a crucial role in establishing the metal-pad stability of the cell. Conventional cells use the cathode-collector-bar assembly to carry the current through molten aluminium, the cathode and the steel collector-bar to nearest external bus. The electrical conductivity of the steel is so poor relative to the molten aluminium that the outer third of the collector bar carries the maximum load, which in turn increases the horizontal components of the current within the cell. Previous studies have modelled improvement in the cell instability through external magnetic compensation by redistributing current in the cathode busbar. Very little to date has been published on work to improve the current distribution within the cell. In this work, the current distribution in an aluminium electrolysis cell with copper collector-bar was predicted using finite element modelling. A 2D cross-section of a commercial cell was used under steady conditions of electrical fields in anode, electrolyte, molten aluminium and copper cathode-assembly. Different shapes and sizes of the cathode assembly are also considered to optimise the distribution of current throughout the cathode lining. The findings indicated that the copper-bar of similar size to steel could save voltage up to 150 mV. There is a reduction of more than 70% in peak current density value due to the copper inserts. The predicted trends of current distribution show a good agreement with previously published data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the application of computer aided design (CAD) in teaching advanced design methodologies to fourth-year undergraduate students majoring in mechanical engineering. This involves modern enhancements in teaching strategies for subjects such as design-for-X (DFx) and failure mode effect analysis (FMEA) concepts, which are traditionally categorised as advanced design methodologies. The main subsets of DFx including design-for-assembly (DFA), design-for-disassembly (DFD), design-for-manufacturing (DFM), design-for-environment (DFE) and design-for-recyclability (DFR) were covered by studying various engineering and consumer products. The unit was designed as a combination of practical hands-on workshop-based classes along with a software-based evaluation of different products. In addition to CAD, finite element modelling techniques were utilised to enhance the students’ understanding of design faults and failures. The inquiry into teaching practice and design of this fourth-year unit was carried out during past two years and it revealed some interesting outcomes from our teaching practice in terms of students’ learning experiences. Finally, the paper discusses some critical factors in the context of teaching advanced design methodologies to the undergraduates in mechanical engineering and even manufacturing engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthetic graphite–phenolic nanocomposites were designed and synthesized with a compositional gradient which is shown to influence transient temperature fields during rapid temperature changes. Such nanocomposites were fabricated using a compression moulding technique, and thermal conductivity and heat capacity of nanocomposites were experimentally determined using a modified transient plane source technique over a wide temperature range from 253.15 to 373.15 K. The effects of four compositional gradient configurations on the transient temperature field across the thickness of a nanocomposite plate, at a high imposed temperature, was investigated. The transient time and temperature fields in nanocomposite structures were highly affected by the compositional gradient configurations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Subclinical psychotic experiences during adolescence may represent liability for developing psychotic disorder. Both coping style and the degree of persistence of psychotic experiences may play a role in the progression to clinical psychotic disorder, but little is known about the causal relationship between the two. Path modelling was used to examine longitudinal relationships between subclinical positive psychotic experiences and three styles of coping (task-, emotion- and avoidance-oriented) in an adolescent general population sample (n=813) assessed three times in 3 years. Distinct developmental trajectories of psychotic experiences, identified with growth mixture modelling, were compared on the use of these coping styles. Over time, emotion-oriented coping in general was bi-directionally related to psychotic experiences. No meaningful results were found for task- or avoidance-oriented coping. Females reported using a wider range of coping styles than males, but the paths between coping and psychotic experiences did not differ by gender. Persistence of psychotic experiences was associated with a greater use of emotion-oriented coping, whereas a decrease in experiences over time was associated with an increased use of task-orientated coping. Emotion-oriented coping is the most important coping style in relation to psychotic experiences, as it may contribute to a 'vicious cycle' and is associated with persistence of experiences. In addition, more task-oriented coping may result in a decrease in psychotic experiences. Results suggest that opportunities for intervention may already be present at the level of subclinical psychosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tempering has been used as a method to develop a range of dual phase steels with the same martensite morphology and volume fraction, but containing phases with different relative strengths. These steels were used to examine the strain partitioning between the two constituent phases experimentally through mechanical testing and numerically through finite element modelling. It was found that increasing the differential in strength between the two phases not only produces regions of high strain, but also regions of low strain. On average, a larger difference in strength between the phases increased the strain carried by the softer phase. There was no discernible preferential strain localisation to the ferrite/martensite interface, with the regions of strain localisation being determined by the morphology of the microstructure. A direct correlation between the average strain in the ferrite, and the measured ductility has been found. © 2014 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the study, the strengthening effect of aluminium foam in thin-walled aluminium tubes subject to bending load in investigated experimentally and numerically. Bending tests are conducted on foam filler, hollow tube and foam-filled tube. The finite element method is used as well to get deeper insight into the crush failure modes via focusing on the influence from wall thickness of the tube. The obtained information is useful to optimally design foam-filled tubes as energy absorbing devices in automotive engineering. The optimisation results can be implemented to find an optimum foam-filled tube that absorbs the same energy as the optimal hollow tube but with much less weight. © (2014) Trans Tech Publications, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, metal foams are becoming more and more popular due to their high energy absorption ability and low density, which are being widely used in automotive engineering and aerospace engineering. As a design guide, foams can be characterised by several main geometric parameters, such as pore size, pore shape, spatial distribution and arrangement and so on. Considering most foam materials have random distributions of cell size and cell shape, the digital material representation and modelling of such materials become more complex. Cell size and shape effects on mechanical behaviours of metal foams have been found and investigated numerically and experimentally in authors' previous studies in which the authors have developed a digital framework for the representation, modelling and evaluation of multi-phase materials including metal foams. In this study, 2-/3-D finite element models are both developed to represent metal foams with random cell distributions and then a series of digital testing are simulated to investigate the mechanical behaviours of such foams. For validation and verification purpose, the results obtained from 2-/3-D models have been compared and good agreement has been found which demonstrated the effectiveness of the digital framework developed for metal forms. © (2014) Trans Tech Publications, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Densification of metallic powders by means of extrusion is regarded as a very attractive processing technique that allows obtaining a high level of relative density of the compact. However, the uniformity of the relative density depends on that of strain distribution and on the processing parameters. Several variants of extrusion can be used for compaction of metal particulates, including the conventional extrusion (CE) and equal channel angular pressing (ECAP), often referred to as equal-channel angular extrusion. Each of these processes has certain advantages and drawbacks with respect to compaction. A comparative study of these two extrusion processes influencing the relative density of compacts has been conducted by numerical simulation using commercial finite element software DEFORM2D. The results have been validated by experiments with titanium and magnesium powders and chips.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation and cutting. The scratch test is usedto evaluate wear modes and material removal associated with wear. There are different damage models in the literature used for the description of material behaviour after damage initiation under different loadingconditions. However, there has been little analysis to compare damage models during scratch test conditions. The first aim of this work is first to use a finite element modelling package (Abaqus/Explicit) to build a 3Dmodel to capture deformation modes during scratching with indenters with different attack angles. Three different damage models are incorporated into the model and patterns of damage initiation and propagation arecompared with experimental results from the literature. This work highlights the role of the damage model in accurately capturing wear modes and material removal during two body sliding interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Skull structure is intimately associated with feeding ability in vertebrates, both in terms of specific performance measures and general ecological characteristics. This study quantitatively assessed variation in the shape of the cranium and mandible in varanoid lizards, and its relationship to structural performance (von Mises strain) and interspecific differences in feeding ecology. Geometric morphometric and linear morphometric analyses were used to evaluate morphological differences, and finite element analysis was used to quantify variation in structural performance (strain during simulated biting, shaking and pulling). This data was then integrated with ecological classes compiled from relevant scientific literature on each species in order to establish structure-function relationships. Finite element modelling results showed that variation in cranial morphology resulted in large differences in the magnitudes and locations of strain in biting, shaking and pulling load cases. Gracile species such as Varanus salvadorii displayed high strain levels during shaking, especially in the areas between the orbits. All models exhibit less strain during pull back loading compared to shake loading, even though a larger force was applied (pull =30N, shake = 20N). Relationships were identified between the morphology, performance, and ecology. Species that did not feed on hard prey clustered in the gracile region of cranial morphospace and exhibited significantly higher levels of strain during biting (P = 0.0106). Species that fed on large prey clustered in the elongate area of mandible morphospace. This relationship differs from those that have been identified in other taxonomic groups such as crocodiles and mammals. This difference may be due to a combination of the open 'space-frame' structure of the varanoid lizard skull, and the 'pull back' behaviour that some species use for processing large prey.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser beam spot-welding is widely applied to join sheet metals for automotive components especially for thinsheet components in automotive industries. The spot welds in such metallic structures contribute a lot to the integrated strength and fatigue life for the whole structures and they are responsible for their damage or collapse in some loading cases. In this paper, the 2-D hybrid special finite elements each containing an edge crack are employed to study the fracture behaviors of laser beam spot-welds. Hence the calculation accuracy in the vicinity of crack tips is ensured, and a better description of stress singularity with only one hybrid element surrounding one crack is provided. The numerical modeling for laser beam spot-welds subjected to three typical modes ofloadings including tension-lap, shear-lap and angle-clip can be greatly simplified with the applications of such elements. Three specimens under lap-shear, lap-tension and angle clip are devised and analyzed respectively, and main fracture parameters such as stress intensity factors and the initial direction of crack growth are obtained through tinite element analyses. The computed results ti'om numerical examples demonstrate the validity and versatility of the proposed modeling.