22 resultados para Dielectric constants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acidified multi-walled carbon nanotubes (a-MWCNTs) coated with polyaniline (PANI) (a-MWCNTs@PANI) nanofiller were prepared by in situ polymerization. Novel dielectric percolative composites, sulfonated poly(aryl ether ketone) (SPAEK)/a-MWCNTs@PANI, with high dielectric constant and low dielectric loss were fabricated using simple solution blending technique. A SPAEK/a-MWCNTs@PANI composite prepared in this fashion exhibited a high dielectric constant above 800, a dielectric loss tangent less than 1.1 at 10 kHz and room temperature. The morphological study of composites by SEM suggested that the in situ polymerization method of preparing a-MWCNTs@PANI nanofillers was useful to achieve good dispersion of fillers in SPAEK matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Percolative dielectric composites of sulfonated poly(aryl ether ketone) (SPAEK) and acidified graphite nanosheets (AGSs) were fabricated by a solution method. The dielectric constant of the as-prepared composite with 4.01 vol % AGSs was found to be 330 at 1000 Hz; this was a significant increase compared to that of pure SPAEK. Through the calculation, a low percolation threshold of the AGS/SPAEK composite was confirmed at 3.18 vol % (0.0318 volume fraction) AGSs; this was attributed to the large surface area and high conductivity of the AGSs. Additionally, our percolative dielectric composites also exhibited good mechanical performances and good thermostability, with a tensile strength of 71.7 MPa, a tensile modulus of 1.91 GPa, a breaking elongation of 16.4%, and a mass loss temperature at 5% of 336°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel ternary dielectric percolative composites, consisting of acidified graphite nanosheets (a-GNs)/copper phthalocyanine (CuPc)/sulfonated poly (aryl ether ketone) (SPAEK), were fabricated using a simple solution blending technique. A functional intermediate CuPc layer was introduced and coated on a-GNs to ensure a good dispersion of a-GNs in the SPAEK matrix and suppress the mobility of free charge carriers effectively, resulting in significant improvement of the dielectric properties of a-GNs@CuPc/SPAEK in contrast to a-GNs/SPAEK. Furthermore, enhanced mechanical properties of a-GNs@CuPc/SPAEK compared to SPAEK have been also achieved. © 2014 the Partner Organisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) hexagonal boron nitride (BN) nanosheets are excellent dielectric substrate for graphene, molybdenum disulfide, and many other 2D nanomaterial-based electronic and photonic devices. To optimize the performance of these 2D devices, it is essential to understand the dielectric screening properties of BN nanosheets as a function of the thickness. Here, electric force microscopy along with theoretical calculations based on both state-of-the-art first-principles calculations with van der Waals interactions under consideration, and nonlinear Thomas-Fermi theory models are used to investigate the dielectric screening in high-quality BN nanosheets of different thicknesses. It is found that atomically thin BN nanosheets are less effective in electric field screening, but the screening capability of BN shows a relatively weak dependence on the layer thickness.