64 resultados para Diabetic Neuropathy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The effect of chronic treatment with acarbose on fasting plasma glucose, insulin, triglyceride, cholesterol and free fatty acid (FFA) concentrations, as well as on the glucose and insulin excursions during oral glucose tolerance test (OGTT), in obese diabetic Wistar (WDF) rats was investigated. Methods: Forty-five mature male WDF rats were randomly distributed to one of the three treatment groups (no acarbose, 20 mg and 40 mg of acarbose/100 g of chow, respectively). After 3.5, 7.5 and 11.5 months, animals were tested for glucose tolerance by means of an OGTT, and their respective metabolic profiles were determined. Control determinations were done in obese and age-matched lean animals before the start of the trial. Results: The WDF rats exhibit higher body weight and fasting blood glucose, insulin, triglyceride and cholesterol concentrations compared to lean animals. Moreover, they show marked glucose intolerance as indicated by the glucose and insulin excursions during OGTT. Interestingly, in both treated and untreated animals, a reversion of the hyperglycaemic state as well as an improvement of the glucose tolerance is observed. However, whereas in the group receiving no acarbose this is accounted for by dramatic increases in fasting plasma insulin concentrations and insulin secretion during OGTT (as indicated by the ΔInsulin area), in rats treated with acarbose the reversion of the diabetic state takes place without increments in hormone concentration. In addition, rats treated with acarbose for 3.5 and 7.5 months show lower plasma triglyceride and FFA concentrations, and the same was observed for cholesterol at the highest dosage of the drug. Conclusions: Chronic treatment with acarbose of WDF rats improves the glycaemic and lipidic control as well as the glucose tolerance, with a lower demand of pancreatic insulin than in untreated rats. This data suggests that the long-term modulation of glucose and insulin excursions after meals improves the insulin sensitivity in this rat strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To compare groups of urban and regional Victorian diabetic children and assess their quality of life, diabetes knowledge, access to services and metabolic control.

Methods: Forty-seven children from three regional Victorian communities (Horsham, Warrnambool and Sale; n = 16, 18 and 13, respectively) were compared with 120 age-, sex- and duration of diabetes-matched children attending the Royal Children's Hospital (RCH) diabetes clinic in Melbourne. Quality of life, diabetes knowledge, use of services, and metabolic control were assessed using the child health questionnaire (CHQ PF-50/CF-80); a diabetes-knowledge questionnaire; access to a diabetes nurse educator (DNE), dietitian and complication screening; and indices of mean HbA1C (values are taken every 3 months in the 'yearly HbA1C'), respectively.

Results: Comparisons of CHQ data showed that regional diabetic youth scored significantly lower on most subscales. The greatest deficits were seen in areas of mental health, self-esteem, parent impact (emotional) and family cohesion. Diabetes knowledge and median yearly HbA1C for patients were not significantly different between the regional and urban centres (8.1%, 8.9%, 8.4% and 8.6% at RCH, Horsham, Warrnambool and Sale, respectively). Patients in regional centres had reportedly less access to team-based diabetes care.

Conclusions: Regional youth in Victoria, with similar levels of metabolic control and diabetes knowledge as their urban counterparts, have a markedly lower quality of life, implying a negative synergy between diabetes and the demands of regional lifestyles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: The mitochondrial uncoupling protein-3 (UCP3) has been implicated in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Recent evidence points toward mitochondrial aberrations as a major contributor to the development of insulin resistance and diabetes, and UCP3 is reduced in diabetes.
Objective: We compared skeletal muscle UCP3 protein levels in prediabetic subjects [i.e. impaired glucose tolerance (IGT)], diabetic patients, and healthy controls and examined whether rosiglitazone treatment was able to restore UCP3.
Patients, Design, Intervention: Ten middle-aged obese men with type 2 diabetes mellitus [age, 61.4 ± 3.1 yr; body mass index (BMI), 29.8 ± 2.9 kg/m2], nine IGT subjects (age, 59.0 ± 6.6 yr; BMI, 29.7 ± 3.0 kg/m2), and 10 age- and BMI-matched healthy controls (age, 57.3 ± 7.4 yr; BMI, 30.1 ± 3.9 kg/m2) participated in this study. After baseline comparisons, diabetic patients received rosiglitazone (2 x 4 mg/d) for 8 wk.
Main Outcome Measures: Muscle biopsies were sampled to determine UCP3 and mitochondrial protein (complex I–V) content.
Results: UCP3 protein content was significantly lower in prediabetic IGT subjects and in diabetic patients compared with healthy controls (39.0 ± 28.5, 47.2 ± 24.7, and 72.0 ± 23.7 arbitrary units, respectively; P < 0.05), whereas the levels of the mitochondrial protein complex I–V were similar between groups. Rosiglitazone treatment for 8 wk significantly increased insulin sensitivity and muscle UCP3 content (from 53.2 ± 29.9 to 66.3 ± 30.9 arbitrary units; P < 0.05).
Conclusion: We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate the effects of globular adiponectin (gAd) on gene expression and whether these effects are mediated through 3',5'-cyclic monophosphate-activated protein kinase in skeletal muscle myotubes obtained from lean, obese and obese diabetic individuals.

Methods: Rectus abdominus muscle biopsies were obtained from surgical patients to establish primary skeletal muscle cell cultures. Three distinct primary cell culture groups were established (lean, obese and obese diabetic; n = 7 in each group). Once differentiated, these cultures were then exposed to gAd or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 6 h.

Results: Stimulation with gAd decreased pyruvate dehydrogenase kinase 4 (PDK4) gene expression in the obese and diabetic samples (p ≤ 0.05) and increased cytochrome c oxidase (COX) subunit 4 (COXIV) gene expression in the myotubes derived from lean individuals only (p < 0.05). AICAR treatment also decreased PDK4 gene expression in the obese- and diabetic-derived myotubes (p ≤ 0.05) and increased the gene expression of the mitochondrial gene, COXIII, in the lean-derived samples only (p < 0.05).

Conclusions: This study demonstrated distinct disparity between myotubes derived from lean compared with obese and obese diabetic individuals following gAd and AICAR treatment. Further understanding of the regulation of PDK4 in obese and diabetic skeletal muscle and its interaction with adiponectin signalling is required as this appears to be an important early molecular event in these disease states that may improve blood glucose control and metabolic flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims To determine the prevalence and risk factors for neuropathy and peripheral vascular disease (PVD) in the Australian diabetic population and identify those at high risk of foot ulceration.

Methods The Australian Diabetes Obesity and Lifestyle study included 11 247 adults aged ≥ 25 years in 42 randomly selected areas of Australia. Neuropathy and PVD were assessed in participants identified as having diabetes (based on self report and oral glucose tolerance test), impaired fasting glucose, impaired glucose tolerance and in a random sample with normal glucose tolerance (total n = 2436).

Results The prevalence of peripheral neuropathy was 13.1% in those with known diabetes (KDM) and 7.1% in those with newly diagnosed (NDM). The prevalence of PVD was 13.9% in KDM and 6.9% in NDM. Of those with diabetes, 19.6% were at risk of foot ulceration. Independent risk factors for peripheral neuropathy were diabetes duration (odds ratio (95% CI) 1.73 (1.33–2.28) per 10 years), height (1.42 (1.08–1.88) per 10 cm), age (2.57 (1.94–3.40) per 10 years) and uric acid (1.59 (1.21–2.09) per 0.1 mmol/l). Risk factors for PVD were diabetes duration (1.64 (1.25–2.16) per 10 years), age (2.45 (1.86–3.22) per 10 years), smoking (2.07 (1.00–4.28)), uric acid (1.03 (1.00–1.06) per 0.1 mmol/l) and urinary albumin/creatinine ratio (1.11 (1.01–1.21) per 1 mg/mmol).

Conclusions The prevalence of neuropathy and PVD was lower in this population than has been reported in other populations. This may reflect differences in sampling methods between community and hospital-based populations. Nevertheless, a substantial proportion of the diabetic population had risk factors for foot ulceration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a metabolic disease characterised by defects in insulin secretion and insulin action and disturbances in carbohydrate, fat and protein metabolism. Hepatic insulin resistance contributes to hyperglycemia and also leads to disturbances in fat metabolism in type 2 diabetes. Psammomys obesus is a unique poly genie animal model of type 2 diabetes and obesity, ideally suited for studies examining physiological and genetic aspects of these diseases. To identify metabolic abnormalities potentially contributing to the obesity and diabetes phenotype in P. obesus, indirect calorimetry was used to characterise whole body energy expenditure and substrate utilisation. Lean-NGT, obese-IGT and obese-diabetic animals were examined in fed and fasted states and following 14 days of dietary energy restriction. Energy expenditure and fat oxidation were elevated in the obese-IGT and obese-diabetic groups in proportion to body weight. Glucose oxidation was not different between groups. Obese-diabetic P. obesus displayed elevated nocturnal blood glucose levels and fat oxidation. Following 14 days of dietary energy restriction, body weight was reduced and plasma insulin and blood glucose levels were normalised in all groups. Glucose oxidation was reduced and fat oxidation was increased. After 24 hours of fasting, plasma insulin and blood glucose levels were normalised in all groups. Energy expenditure and glucose oxidation were greatly reduced and fat oxidation was increased. Following either dietary energy restriction or fasting, energy expenditure, glucose oxidation and fat oxidation were not different between groups of P. obesus. Energy expenditure and whole body substrate utilisation in P. obesus was similar to that seen in humans. P. obesus responded normally to short term fasting and dietary energy restriction. Elevated nocturnal fat oxidation rates and plasma glucose levels in obese-diabetic P. obesus may be an important factor in the pathogenesis of obesity and type 2 diabetes in these animals. These studies have further validated P. obesus as an ideal animal model of type 2 diabetes and obesity. It was hypothesised that many genes in the liver of P. obesus involved in glucose and fat metabolism would be differentially expressed between lean-NGT and obese-diabetic animals. These genes may represent significant factors in the pathophysiology of type 2 diabetes. Two gene discovery experiments were conducted using suppression subtractive hybridisation (SSH) to enrich a cDNA library for differentially expressed genes. Experiment 1 used cDNA dot blots to screen 576 clones with cDNA derived from lean-NGT and obese-diabetic animals. 6 clones were identified as overexpressed in lean-NGT animals and 6 were overexpressed in obese-diabetic animals. These 12 clones were sequenced and SYBR-Green PCR was used to confirm differential gene expression. 4 genes were overexpressed (≥1.5 fold) in lean-NGT animals and 4 genes were overexpressed (≥1.5 fold) in obese-diabetic animals. To explore the physiological role of these genes, hepatic gene expression was examined in several physiological conditions. One gene, encoding thyroxine binding globulin (TBG), was confirmed as overexpressed in lean-NGT P. obesus with ad libitum access to food, relative to both obese-IGT and obese-diabetic animals. TBG expression decreased with fasting in all animals. Fasting TBG expression remained greater in lean-NGT animals than obese-IGT and obese-diabetic animals. TBG expression was not significantly affected by dietary energy restriction. TBG is involved in thyroid metabolism and is potentially involved in the regulation of energy expenditure. Fasting increased hepatic site 1 protease (SIP) expression in lean-NGT animals but was not significantly affected in obese-IGT and obese-diabetic animals. SIP expression was not significantly affected by dietary energy restriction. SIP is involved in the proteolytic processing of steroid response element binding proteins (SREBP). SREBPs are insulin responsive and are known to be involved in lipid metabolism. Gene expression studies found TBG and SIP were associated with obesity and diabetes. Future research will determine whether TBG and SIP are important in the pathogenesis of these diseases. Experiment 2 used SSH and cDNA microarray to screen 8064 clones. 223 clones were identified as overexpressed in lean-NGT P. obesus and 274 clones were overexpressed in obese-diabetic P. obesus (p ≤0.05). The 9 most significantly differentially expressed clones identified from the microarray screen were sequenced (p ≤0.01). 7 novel genes were identified as well as; sulfotransferase related protein and albumin. These 2 genes have not previously been associated with either type 2 diabetes or obesity. It is unclear why hepatic expression of these genes may differ between lean-NGT and obese-diabetic groups of P. obesus. Subsequent studies will explore the potential role of these novel and known genes in the pathophysiology of type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anti-diabetic or anti-hypertensive fish protein hydrolysate is provided, in which the fish is of the genus Salmo or Oncorhynchus, and wherein the fish protein is hydrolysed by a metalloendopeptidase obtainable from Bacillus amyloliquefaciens. Methods of making and methods for using such fish protein hydrolysates are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: The 5′-AMP-activated protein kinase (AMPK) pathway is intact in type 2 diabetic patients and is seen as a target for diabetes treatment. In this study, we aimed to assess the impact of the AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) on both glucose and fatty acid metabolism in vivo in type 2 diabetic patients.

Methods: Stable isotope methodology and blood and muscle biopsy sampling were applied to assess blood glucose and fatty acid kinetics following continuous i.v. infusion of AICAR (0.75 mg kg−1 min−1) and/or NaCl (0.9%) in ten male type 2 diabetic patients (age 64 ± 2 years; BMI 28 ± 1 kg/m2).
Results Plasma glucose rate of appearance (R a) was reduced following AICAR administration, while plasma glucose rate of disappearance (R d) was similar in the AICAR and control test. Consequently, blood glucose disposal (R d expressed as a percentage of R a) was increased following AICAR infusion (p < 0.001). Accordingly, a greater decline in plasma glucose concentration was observed following AICAR infusion (p < 0.001). Plasma NEFA R a and R d were both significantly reduced in response to AICAR infusion, and were accompanied by a significant decline in plasma NEFA concentration. Although AMPK phosphorylation in skeletal muscle was not increased, we observed a significant increase in acetyl-CoA carboxylase phosphorylation (p < 0.001).

Conclusions/interpretation
: The i.v. administration of AICAR reduces hepatic glucose output, thereby lowering blood glucose concentrations in vivo in type 2 diabetic patients. Furthermore, AICAR administration stimulates hepatic fatty acid oxidation and/or inhibits whole body lipolysis, thereby reducing plasma NEFA concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolism in Psammomys obesis, a polygenic animal model of obesity and type 2 diabetes is associated with dysregulated nocturnal fat oxidation in diabetic animals. Furthermore, a new gene called AGT-203 has been identified. Evidence indicates that AGT-203 is involved in abnormal glucose metabolism leading to the proposition that AGT-203 is a new candidate gene for type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study identified the protein PARL (Presenilin-associated rhomboid like) as a potential mediator of the mitochondrial abnormalities that are observed in diabetic skeletal muscle. This was demonstrated by analysing PARL expression in an animal model of type 2 diabetes and by investigating the biological effects of genetic variation in the human PARL gene.