28 resultados para CHEMICAL-STRUCTURE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel three-dimensional AlN microroses, for the first time, have been synthesized via direct reaction between Al and N2 in arc plasma without any catalyst and template.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of climate change on the shallow expansive foundation conditions of resident dwellings is costing several hundred billion dollars worldwide. The design and costs of constructing or repairing residential footings is greatly influenced by the degree of ground movement, which is driven by the magnitude of change in soil moisture. The impacts of climate change on urban infrastructure are expected to include accelerated degradation of materials and foundations of buildings and facilities, increased ground movement, changes in ground water affecting the chemical structure of foundations, and fatigue of structures from extreme storm events. Previous research found that residential houses that were built less than five years ago have suffered major cracks and other damage caused by slab movement after record rainfall. The Thornthwaite Moisture Index (TMI) categorises climate on the basis of rainfall, temperature, potential evapotranspiration and the water holding capacity of the soil. Originally TMI was mainly used to map soil moisture conditions for agriculture but soon became a method to predict pavement and foundation changes. Few researchers have developed TMI maps for Australia, but generally, their accuracy is low or unknown, and their use is limited. The aims of this paper are: (1) To produce accurate maps of TMI for the state of Victoria for 100 years (1913 to 2012) in 20 year periods using long-term historical climatic data and advanced spatial statistics methods in GIS, and (2) Analyse the spatial and temporal changes of TMI in Victoria. Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A three-step plasma treatment, including surface activation with argon, surface functionalization with oxygen and then thin film deposition using a pulsed plasma polymerization of hexamethyldisiloxane (HMDSO), was used in low-pressure plasma to improve the pilling resistance of knitted wool fabric. The pilling propensity of the treated samples was investigated and compared with the pilling propensity of untreated, argon activated and oxygen functionized samples and argon and oxygen plasma-treated samples that were afterwards subject to continuous wave plasma polymerization of HMDSO. With the three-step treatment, a pilling grade of four was achieved for the treated wool fabric, while that of untreated and other plasma-treated was two and three, respectively. For the three-step plasma-treated sample, a uniform HMDSO polymer coating of 300 nm thickness was obtained; X-ray photoelectron spectroscopy (XPS) showed the presence of the silicone element, and Fourier transform infrared (FTIR) spectroscopy confirmed the chemical structure of the coating. No apparent differences were found in the whiteness index between the treated and untreated wool knits, but there was deterioration in the bursting strength and handle of the plasma-treated wool samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atom probe tomography (APT) has been used to investigate the surface and sub-surface microstructures of aluminum alloy 2024 (AA2024) in the T3 condition (solution heat treated, cold worked, and naturally aged to a substantially stable condition). This study revealed surface Cu enrichment on the alloy matrix, local chemical structure around a dispersoid Al20Mn3Cu2 particle including a Cu-rich particle and S-phase particle on its external surface. Moreover, there was a significant level of hydrogen within the dispersoid, indicating that it is a hydrogen sink. These observations of the nanoscale structure around the dispersoid particle have considerable implications for understanding both corrosion and hydrogen embrittlement in high-strength aluminum alloys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract The thermal decomposition of PVA and PVA composites during the melting-crystallization process is still unclear due to indistinct changes in chemical compositions. Using graphene as a model, the decomposition properties of PVA and PVA-graphene composites were systematically analyzed under multiple melting-crystallization cycles. And a series of isothermal decomposition experiments around the melting-crystallization temperature were carried out to simulate the corresponding decomposition kinetics. Based on multiple cycle melting-crystallization, the weight loss of PVA and PVA/graphene composites was successfully quantified. Further morphology investigation and chemical structure analysis indicated that the decomposition was non-uniformly distributed, rendering the possibility of crystallization for PVA and PVA/graphene composites after multiple heating-cooling cycles. In addition, isothermal decomposition analysis based on reduced time plot approach and model-free iso-conversional method indicated that Avrami-Eroffev model could well match the decomposition process of the neat PVA and PG-0.3 composite, while the Avrami-Eroffev and first order models could precisely forecast the decomposition of PG-0.9 composite. Both analyses during multiple cycle melting-crystallization and isothermal decomposition demonstrated that graphene served as decomposition accelerator in the whole thermal decomposition process, and particularly the decomposition of neat PVA and PVA/graphene composites was highly related to the band area ratios of C-H and O-H vibrations in Fourier transform infrared (FTIR) spectrum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study an Fe-18Al (at.%) alloy after various thermal treatments at different times (24-336 h) and temperatures (250-1100 °C) to determine the nature of the so-called 'komplex' phase state (or "K-state"), which is common to other alloy systems having compositions at the boundaries of known order-disorder transitions and is characterised by heterogeneous short-range-ordering (SRO). This has been done by direct observation using atom probe tomography (APT), which reveals that nano-sized, ordered regions/particles do not exist. Also, by employing shell-based analysis of the three-dimensional atomic positions, we have determined chemically sensitive, generalised multicomponent short-range order (GM-SRO) parameters, which are compared with published pairwise SRO parameters derived from bulk, volume-averaged measurement techniques (e.g. X-ray and neutron scattering, Mössbauer spectroscopy) and combined ab-initio and Monte Carlo simulations. This analysis procedure has general relevance for other alloy systems where quantitative chemical-structure evaluation of local atomic environments is required to understand ordering and partial ordering phenomena that affect physical and mechanical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fabrication of artificial scaffolds that effectively mimic the host environment of the cell have exciting potential for the treatment of many diseases in regenerative medicine. In particular, appropriately designed scaffolds have the capacity to support, replace, and mediate the transplantation of therapeutic cells in order to regenerate damaged or diseased tissues. To achieve these goals for regeneration, the engineering of an environment structurally similar to the native extracellular matrix (ECM) is necessary in order to closely match the chemical and physical conditions found within the extracellular niche. Recently, self-assembled peptide (SAP) hydrogels have shown great potential for such biological applications due to their inherent biocompatibility, propensity to form higher order structures, rich chemical functionality and ease of synthesis. Importantly, it is possible to control the organization and properties of the target materials as the chemical structure is determined by amino acid sequence. Here, the development of SAP hydrogels as functional cell scaffolds and useful tools in tissue engineering is reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acrylamide hydrogels were synthesized in the presence of various non-solvents for linear polyacrylamide to examine phase separation during polymerization. The process was found to be dependent upon the segmental volume, the chemical structure, and the concentration of the non-solvent. The concept of conversion-phase diagram for linear polymer is introduced and used qualitatively to understand polymerization induced phase separation (PIPS), and to predict the onset of PIPS during hydrogel synthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of oxidative stabilization and carbonization processes on the structure, mass and mechanical properties of polyacrylonitrile (PAN) precursor fibers was analyzed. A gradual densification of the fibers occurring from mass loss, decrease in fiber diameter and increase in density were observed after stabilization at a maximum temperature of 255 °C and carbonization at a maximum temperature of 800 °C. The tensile strength and modulus of the fibers were found to decrease after stabilization but then increased after low temperature carbonization. The thermal processing of the precursor fibers affected their mode of failure after tensile loading, changing from a ductile type of failure to a brittle type. The type of failure correlated well with the crystal structure changes in the fibers. Whilst the PAN precursor fiber started to exotherm above 225 °C in air, no prominent exothermic reaction was measured in the carbonized fibers in air up to 430 °C. The aromatization index of stabilized fiber was calculated to be ∼66%, and that of carbonized fiber was ∼99%. FTIR studies indicated that the variation in the chemical structure of the fibers with the stabilization of the fibers. Radial heterogeneity in the stabilized fibers was observed however it was not promoted to the carbonized fibers. Finally, a method to calculate mass retention of PAN precursor fiber after heat treatment was developed, and the calculated percentage mass retained of the precursor fiber after oxidation and carbonization were found to be 81% and 51%, respectively. . This study proposes an effective method to calculate the percentage of mass retained by precursor fibers after stabilization and low temperature carbonization to provide a model for evaluating carbon fiber yield from a given amount of fibers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nanowire and whisker heterostructures of tin dioxide were fabricated by the chemical vapor deposition technique. It was demonstrated that various structures of tin oxide can be obtained by controlling the thickness of gold layer and the partial pressure of source vapor at growing sites. 12.5 and 25 nm thicknesses are preferable for the epitaxial growth of nanowires and heterostructure through vapor-liquid-solid mechanism, respectively. The tin dioxide whiskers with core-shell structure were fabricated by vapor-solid mechanism. Meanwhile, the influences of various factors on the tin dioxide growth are also discussed.