28 resultados para C-TERMINAL THIOESTERS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antibodies against the 19 kDa C‐terminal fragment of merozoite surface protein 1 (MSP119) are a major component of the invasion‐inhibitory response in individuals immune to malaria. We report here the acquisition of MSP119‐specific invasion‐inhibitory antibodies in a group of transmigrants who experienced their sequential malaria infections during settlement in an area of Indonesia where malaria is highly endemic. We used 2 transgenic Plasmodium falciparum parasite lines that expressed either endogenous MSP119 or the homologous region from P. chabaudi to measure the MSP119‐specific invasion‐inhibitory antibodies. The results revealed that the acquisition of MSP119‐specific invasion‐inhibitory antibodies required 2 or more P. falciparum infections. In contrast, enzyme‐linked immunosorbent assays on the same serum samples showed that MSP119‐specific antibodies are present after the first malaria infection. This delay in the acquisition of functional antibodies by residents of areas where malaria is endemic is consistent with the observation that multiple malaria infections are required before clinical immunity is acquired.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antibodies from malaria-exposed individuals can agglutinate merozoites released from Plasmodium schizonts, thereby preventing them from invading new erythrocytes. Merozoite coat proteins attached to the plasma membrane are major targets for host antibodies and are therefore considered important malaria vaccine candidates. Prominent among these is the abundant glycosylphosphatidylinositol (GPI)-anchored merozoite surface protein 1 (MSP1) and particularly its C-terminal fragment (MSP1(19)) comprised of two epidermal growth factor (EGF)-like modules. In this paper, we revisit the role of agglutination and immunity using transgenic fluorescent marker proteins. We describe expression of heterologous MSP1(19)'miniproteins' on the surface of Plasmodium falciparum merozoites. To correctly express these proteins, we determined that GPI-anchoring and the presence of a signal sequence do not allow default export of proteins from the endoplasmic reticulum to merozoite surface and that extra sequence elements are required. The EGFs are insufficient for correct trafficking unless they are fused to additional residues that normally reside upstream of this fragment. Antibodies specifically targeting the surface-expressed miniprotein can inhibit erythrocyte invasion in vitro despite the presence of endogenous MSP1. Using a line expressing a green fluorescent protein-MSP1 fusion protein, we demonstrate that one mode of inhibition by antibodies targeting the MSP1(19) domain is the rapid agglutinating of merozoites prior to erythrocyte attachment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin (Ang) I-converting enzyme (ACE) is a member of the gluzincin family of zinc metalloproteinases that contains two homologous catalytic domains. Both the N- and C-terminal domains are peptidyl-dipeptidases that catalyze Ang II formation and bradykinin degradation. Multiple sequence alignment was used to predict His1089 as the catalytic residue in human ACE C-domain that, by analogy with the prototypical gluzincin, thermolysin, stabilizes the scissile carbonyl bond through a hydrogen bond during transition state binding. Site-directed mutagenesis was used to change His1089 to Ala or Leu. At pH 7.5, with Ang I as substrate, kcat/Km values for these Ala and Leu mutants were 430 and 4,000-fold lower, respectively, compared with wild-type enzyme and were mainly due to a decrease in catalytic rate (kcat) with minor effects on ground state substrate binding (Km). A 120,000-fold decrease in the binding of lisinopril, a proposed transition state mimic, was also observed with the His1089 --> Ala mutation. ACE C-domain-dependent cleavage of AcAFAA showed a pH optimum of 8.2. H1089A has a pH optimum of 5.5 with no pH dependence of its catalytic activity in the range 6.5-10.5, indicating that the His1089 side chain allows ACE to function as an alkaline peptidyl-dipeptidase. Since transition state mutants of other gluzincins show pH optima shifts toward the alkaline, this effect of His1089 on the ACE pH optimum and its ability to influence transition state binding of the sulfhydryl inhibitor captopril indicate that the catalytic mechanism of ACE is distinct from that of other gluzincins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre-mRNA 3' end processing, binds to the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3' end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3' end processing activity of Pcf11p and a deficiency of Pcf11p in 3' end processing did not prevent CTD binding. Transcriptional run-on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RNA polymerase II (pol II) transcription termination requires co-transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA-binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted -propeller-forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C-terminal domain (CTD) of pol II in vitro and in a two-hybrid test in vivo. Furthermore, transcriptional run-on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3'-end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have identified a major allergenic protein from rye-grass pollen, tentatively designated Lol pIb of 31kDa and with pI 9.0. A cDNA clone encoding Lol pIb has been isolated, sequenced, and characterized. Lol pIb is located mainly in the starch granules. This is a distinct allergen from Lol pI, which is located in the cytosol. Lol pIb is synthesized in pollen as a pre-allergen with a transit peptide targeting the allergen to amyloplasts. Epitope mapping of the fusion protein localized the IgE binding determinant in the C-terminal domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We previously reported that Pseudomonas aeruginosa PA14 secretes a protein that can reduce the apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Here we report that we have used a proteomic approach to identify this secreted protein as PA2394, and we have named the gene cif, for CFTR inhibitory factor. We demonstrate that Cif is a secreted protein and is found associated with outer membrane-derived vesicles. Expression of Cif in Escherichia coli and purification of the C-terminal six-His-tagged Cif protein showed that Cif is necessary and sufficient to mediate the reduction in apical membrane expression of CFTR and a concomitant reduction in CFTR-mediated Cl− ion secretion. Cif demonstrates epoxide hydrolase activity in vitro and requires a highly conserved histidine residue identified in α/β hydrolase family enzymes to catalyze this reaction. Mutating this histidine residue also abolishes the ability of Cif to reduce apical membrane CFTR expression. Finally, we demonstrate that the cif gene is expressed in the cystic fibrosis (CF) lung and that nonmucoid isolates of P. aeruginosa show greater expression of the gene than do mucoid isolates. We propose a model in which the Cif-mediated decrease in apical membrane expression of CFTR by environmental isolates of P. aeruginosa facilitates the colonization of the CF lung by this microbe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The angiotensin AT4 receptor was originally defined as the specific, high-affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT4 receptor. Central administration of Ang IV, its analogues or LVV-hemorphin 7 markedly enhance learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The AT4 receptor has a broad distribution and is found in a range of tissues, including the adrenal gland, kidney, lung and heart. In the kidney Ang IV increases renal cortical blood flow and decreases Na+ transport in isolated renal proximal tubules. The AT4 receptor has recently been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). IRAP is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and is predominantly found in GLUT4 vesicles in insulin-responsive cells. Three hypotheses for the memory-potentiating effects of the AT4 receptor/IRAP ligands, Ang IV and LVV-hemorphin 7, are proposed: (i) acting as potent inhibitors of IRAP, they may prolong the action of endogenous promnestic peptides; (ii) they may modulate glucose uptake by modulating trafficking of GLUT4; (iii) IRAP may act as a receptor, transducing the signal initiated by ligand binding to its C-terminal domain to the intracellular domain that interacts with several cytoplasmic proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The atypical Nef protein (NefF12) from human immunodeficiency virus type 1 strain F12 (HIV-1F12) interferes with virion production and infectivity via a mysterious mechanism. The correlation of these effects with the unusual perinuclear subcellular localization of NefF12 suggested that the wild-type Nef protein could bind to assembly intermediates in late stages of viral replication. To test this hypothesis, Nef from HIV-1NL4-3 was fused to an endoplasmic reticulum (ER) retention signal (NefKKXX). This mutant NefKKXX protein recapitulated fully the effects of NefF12 on Gag processing and virion production, either alone or as a CD8 fusion protein. Importantly, the mutant NefKKXX protein also localized to the intermediate compartment, between the ER and the trans-Golgi network. Furthermore, Nef bound the GagPol polyprotein in vitro and in vivo. This binding mapped to the C-terminal flexible loop in Nef and the transframe p6* protein in GagPol. The significance of this interaction was demonstrated by a genetic assay in which the release of a mutant HIV-1 provirus lacking the PTAP motif in the late domain that no longer binds Tsg101 was rescued by a Nef.Tsg101 chimera. Importantly, this rescue as well as incorporation of Nef into HIV-1 virions correlated with the ability of Nef to interact with GagPol. Our data demonstrate that the retention of Nef in the intermediate compartment interferes with viral replication and suggest a new role for Nef in the production of HIV-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 Microsatellite repeats are genetically unstable and subject to expansion and shrinkage. A subset of them, triplet repeats, can occur within the coding region and specify homomeric tracts of amino acids. Polyglutamine (polyQ) tracts are enriched in eukaryotic regulatory proteins, notably transcription factors, and we had shown before that they can contribute to transcriptional activation in mammalian cells. Here we generalize this finding by also including evolutionarily divergent organisms, namely, Drosophila and baker's yeast. In all three systems, Gal4-based model transcription factors were more active if they harbored a polyQ tract, and the activity depended on the length of the tract. By contrast, a polyserine tract was inactive. PolyQs acted from either an internal or a C-terminal position, thus ruling out a merely structural 'linker' effect. Finally, a two-hybrid assay in mammalian cells showed that polyQ tracts can interact with each other, supporting the concept that a polyQ-containing transcription factor can recruit other factors with polyQ tracts or glutamine-rich activation domains. The widespread occurrence of polyQ repeats in regulatory proteins suggests a beneficial role; in addition to the contribution to transcriptional activity, their genetic instability might help a species to adapt to changing environmental conditions in a potentially reversible manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

n16 is a framework protein family associated with biogenic mineral stabilization, thought to operate at three key interfaces in nacre: protein/β-chitin, protein/protein, and protein/CaCO3. The N-terminal half of this protein, n16N, is known to be active in conferring this mineral stabilization and organization. While some details relating to the stabilization and organization of the mineral are known, the molecular mechanisms that underpin these processes are not yet established. To provide these molecular-scale details, here we explore current hypotheses regarding the possible subdomain organization of n16N, as related to these three interfaces in nacre, by combining outcomes of Replica Exchange with Solute Tempering molecular dynamics simulations with NMR experiments, to investigate the conformational ensemble of n16N in solution. We verify that n16N lacks a well-defined secondary structure, both with and without the presence of Ca(2+) ions, as identified from previous experiments. Our data support the presence of three different, functional subdomains within n16N. Our results reveal that tyrosine, chiefly located in the center of the peptide, plays a multifunctional role in stabilizing conformations of n16N, for intrapeptide and possibly interpeptide interactions. Complementary NMR spectroscopy data confirm the participation of tyrosine in this stabilization. The C-terminal half of n16N, lacking in tyrosine and highly charged, shows substantive conformational diversity and is proposed as a likely site for nucleation of calcium carbonate. Finally, dominant structures from our predicted conformational ensemble suggest the presentation of key residues thought to be critical to the selective binding to β-chitin surfaces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The HIV-1 Gag precursor protein, Pr55(Gag), is a multi-domain polyprotein that drives HIV-1 assembly. The morphological features of HIV-1 suggested Pr55(Gag) assumes a variety of different conformations during virion assembly and maturation, yet structural determination of HIV-1 Pr55(Gag) has not been possible due to an inability to express and to isolate large amounts of full-length recombinant Pr55(Gag) for biophysical and biochemical analyses. This challenge is further complicated by HIV-1 Gag's natural propensity to multimerize for the formation of viral particle (with ∼2500 Gag molecules per virion), and this has led Pr55(Gag) to aggregate and be expressed as inclusion bodies in a number of in vitro protein expression systems. This study reported the production of a recombinant form of HIV-1 Pr55(Gag) using a bacterial heterologous expression system. Recombinant HIV-1 Pr55(Gag) was expressed with a C-terminal His×6 tag, and purified using a combination of immobilized metal affinity chromatography and size exclusion chromatography. This procedure resulted in the production of milligram quantities of high purity HIV-1 Pr55(Gag) that has a mobility that resembles a trimer in solution using size exclusion chromatography analysis. The high quantity and purity of the full length HIV Gag will be suitable for structural and functional studies to further understand the process of viral assembly, maturation and the development of inhibitors to interfere with the process.