19 resultados para 2,4-DICHLOROPHENOXYACETIC ACID HERBICIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3).

Thirty-three volatile compounds were isolated using simultaneous distillation–extraction (SDE) and identified by GC–MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumption of long-chain n-3 PUFA, particularly DHA, has been shown to improve cardiovascular risk factors but the intake required to achieve benefits is unclear. We sought to determine the relationship between DHA intake, increases in erythrocyte DHA content and changes in blood lipids. A total of sixty-seven subjects (thirty-six male, thirty-one female, mean age 53 years) with fasting serum TAG ≥ 1·1 mmol/l and BMI>25 kg/m2 completed a 12-week, randomized, double-blind, placebo-controlled parallel intervention. Subjects consumed 2, 4 or 6 g/d of DHA-rich fish oil (26 % DHA, 6 % EPA) or a placebo (Sunola oil). Fasting blood lipid concentrations and fatty acid profiles in erythrocyte membranes were assessed at baseline and after 6 and 12 weeks. For every 1 g/d increase in DHA intake, there was a 23 % reduction in TAG (mean baseline concentration 1·9 (sem 0·1) mmol/l), 4·4 % increase in HDL-cholesterol and 7·1 % increase in LDL-cholesterol. Erythrocyte DHA content increased in proportion to the dose of DHA consumed (r 0·72, P < 0·001) and the increase after 12 weeks was linearly related to reductions in TAG (r − 0·38, P < 0·01) and increases in total cholesterol (r 0·39, P < 0·01), LDL-cholesterol (r 0·33, P < 0·01) and HDL-cholesterol (r 0·30, P = 0·02). The close association between incorporation of DHA in erythrocytes and its effects on serum lipids highlights the importance of erythrocyte DHA as an indicator of cardiovascular health status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: Skeletal muscle insulin resistance and oxidative stress are characteristic metabolic disturbances in people with type 2 diabetes. Studies in insulin resistant rodents show an improvement in skeletal muscle insulin sensitivity and oxidative stress following antioxidant supplementation. We therefore investigated the potential ameliorative effects of antioxidant ascorbic acid (AA) supplementation on skeletal muscle insulin sensitivity and oxidative stress in people with type 2 diabetes. METHODS: Participants with stable glucose control commenced a randomized cross-over study involving four months of AA (2×500mg/day) or placebo supplementation. Insulin sensitivity was assessed using a hyperinsulinaemic, euglycaemic clamp coupled with infusion of 6,6-D2 glucose. Muscle biopsies were measured for AA concentration and oxidative stress markers that included basal measures (2',7'-dichlorofluorescin [DCFH] oxidation, ratio of reduced-to-oxidized glutathione [GSH/GSSG] and F2-Isoprostanes) and insulin-stimulated measures (DCFH oxidation). Antioxidant concentrations, citrate synthase activity and protein abundances of sodium-dependent vitamin C transporter 2 (SVCT2), total Akt and phosphorylated Akt (ser473) were also measured in muscle samples. RESULTS: AA supplementation significantly increased insulin-mediated glucose disposal (delta rate of glucose disappearance; ∆Rd) (p=0.009), peripheral insulin-sensitivity index (p=0.046), skeletal muscle AA concentration (p=0.017) and muscle SVCT2 protein expression (p=0.008); but significantly decreased skeletal muscle DCFH oxidation during hyperinsulinaemia (p=0.007) when compared with placebo. Total superoxide dismutase activity was also lower following AA supplementation when compared with placebo (p=0.006). Basal oxidative stress markers, citrate synthase activity, endogenous glucose production, HbA1C and muscle Akt expression were not significantly altered by AA supplementation. CONCLUSIONS/INTERPRETATION: In summary, oral AA supplementation ameliorates skeletal muscle oxidative stress during hyperinsulinaemia and improves insulin-mediated glucose disposal in people with type 2 diabetes. Findings implicate AA supplementation as a potentially inexpensive, convenient, and effective adjunct therapy in the treatment of insulin resistance in people with type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Targeted liquid chromatography–mass spectrometry (LC–MS) technology using size exclusion chromatography and metabolite profiling based on gas chromatography–mass spectrometry (GC–MS) were used to study the nickel-rich latex of the hyperaccumulating tree Sebertia acuminata. More than 120 compounds were detected, 57 of these were subsequently identified. A methylated aldaric acid (2,4,5-trihydroxy-3-methoxy-1,6-hexan-dioic acid) was identified for the first time in biological extracts and its structure was confirmed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. After citric acid, it appears to be one of the most abundant small organic molecules present in the latex studied. Nickel(II) complexes of stoichiometry NiII:acid = 1:2 were detected for these two acids as well as for malic, itaconic, erythronic, galacturonic, tartaric, aconitic and saccharic acids. These results provide further evidence that organic acids may play an important role in the transport and possibly in the storage of metal ions in hyperaccumulating plants.