2 resultados para 2,4-DICHLOROPHENOXYACETIC ACID HERBICIDE

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.

Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and direct observation of triplet 2,4-dimethylene-1,3- cyclobutanediyl (1), the non-Kekule isomer of benzene, is described. The biradical was generated by photolysis of 5,6-dimethylene-2,3- diazabicyclo[2.1.1]hex-2-ene (2) (which was synthesized in several steps from benzvalene) under cryogenic, matrix-isolation conditions. Biradical 1 was characterized by EPR spectroscopy (‌‌‌‌‌│D/hc│ =0.0204 cm^(-1), │E/hc│ =0.0028 cm^(-1)) and found to have a triplet ground state. The Δm_s= 2 transition displays hyperfine splitting attributed to a 7.3-G coupling to the ring methine and a 5.9-G coupling to the exocyclic methylene protons. Several experiments, including application of the magnetophotoselection (mps) technique in the generation of biradical 1, have allowed a determination of the zero-field triplet sublevels as x = -0.0040, y = +0.0136, and z = -0.0096 cm^(-1), where x and y are respectively the long and short in-plane axes and z the out-of-plane axis of 1.

Triplet 1 is yellow-orange and displays highly structured absorption (λ_(max)= 506 nm) and fluorescence (λ_(max) = 510 nm) spectra, with vibronic spacings of 1520 and 620 cm^(-1) for absorption and 1570 and 620 cm^(-1) for emission. The spectra were unequivocally assigned to triplet 1 by the use of a novel technique that takes advantage of the biradical's photolability. The absorption є = 7200 M^(-1) cm^(-1) and f = 0.022, establishing that the transition is spin-allowed. Further use of the mps technique has demonstrated that the transition is x-polarized, and the excited state 1s therefore of B_(1g) symmetry, in accord with theoretical predictions.

Thermolysis or direct photolysis of diazene 2 in fluid solution produces 2,4- dimethylenebicyclo[l.l.0]butane (3), whose ^(l)H NMR spectrum (-80°C, CD_(2)Cl_(2)) consists of singlets at δ 4.22 and 3.18 in a 2:1 ratio. Compound 3 is thermally unstable and dimerizes with second-order kinetics between -80 and -25°C (∆H^(‡) = 6.8 kcal mol^(-1), (∆s^(‡) = -28 eu) by a mechanism involving direct combination of two molecules of 3 in the rate-determining step. This singlet-manifold reaction ultimately produces a mixture of two dimers, 3,8,9- trimethylenetricyclo[5.1.1.0^(2,5)]non-4-ene (75) and trans-3,10-dimethylenetricyclo[6.2.0.0^(2,5)]deca-4,8-diene (76t), with the former predominating. In contrast, triplet-sensitized photolysis of 2, which leads to triplet 1, provides, in addition to 75 and 76t, a substantial amount of trans-5,10- dimethylenetricyclo[6.2.0.0^(3,6)]deca-3,8-diene (77t) and small amounts of two unidentified dimers.

In addition, triplet biradical 1 ring-closes to 3 in rigid media both thermally (77-140 K) and photochemically. In solution 3 forms triplet 1 upon energy transfer from sensitizers having relatively low triplet energies. The implications of the thermal chemistry for the energy surfaces of the system are discussed.