178 resultados para Dynamic artificial neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public installation running throughout the night at Cube 37 gallery. Morphing forms are projected onto the glass front of the gallery, facing the street. Human perticipants interact with the forms whose morphology changes with the movements of the participants. When no human participants are present, a neural network based agent that has learnt how to dance from a trained dancer, takes over and the forms follow the agent's movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creating a set of a number of neural network (NN) models in an ensemble and accumulating them can achieve better overview capability as compared to single neural network. Neural network ensembles are designed to provide solutions to particular problems. Many researchers and academicians have adopted this NN ensemble technique, especially in machine learning, and has been applied in various fields of engineering, medicine and information technology. This paper present a robust aggregation methodology for load demand forecasting based on Bayesian Model Averaging of a set of neural network models in an ensemble. This paper estimate a vector of coefficient for individual NN models' forecasts using validation data-set. These coefficients, also known as weights, are equal to posterior probabilities of the models generating the forecasts. These BMA weights are then used in combining forecasts generated from NN models with test data-set. By comparing the Bayesian results with the Simple Averaging method, it was observed that benefits are obtained by utilizing an advanced method like BMA for forecast combinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an empirical analysis on transfer learning using the Fuzzy Min–Max (FMM) neural network with an online learning strategy. Three transfer learning benchmark data sets, i.e., 20 Newsgroups, WiFi Time, and Botswana, are used for evaluation. In addition, the data samples are corrupted with white Gaussian noise up to 50 %, in order to assess the robustness of the online FMM network in handling noisy transfer learning tasks. The results are analyzed and compared with those from other methods. The outcomes indicate that the online FMM network is effective for undertaking transfer learning tasks in noisy environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-term load forecasting (STLF) is of great importance for control and scheduling of electrical power systems. The uncertainty of power systems increases due to the random nature of climate and the penetration of the renewable energies such as wind and solar power. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in datasets. To quantify these potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for construction of prediction intervals (PIs). A newly proposed method, called lower upper bound estimation (LUBE), is applied to develop PIs using NN models. The primary multi-objective problem is firstly transformed into a constrained single-objective problem. This new problem formulation is closer to the original problem and has fewer parameters than the cost function. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Two case studies from Singapore and New South Wales (Australia) historical load datasets are used to validate the PSO-based LUBE method. Demonstrated results show that the proposed method can construct high quality PIs for load forecasting applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results obtained from a hybrid neural network—finite element model are reported in this paper. The hybrid model incorporates artificial neural network (ANN) nodes into a numerical scheme, which solves the two-dimensional shallow water equations using finite elements (FE). First, numerical computations are carried out on the entire numerical model, using a larger mesh. The results from this computation are then used to train several preselected ANN nodes. The ANN nodes model the response for a part of the entire numerical model by transferring the system reaction to the location where both models are connected in real time. This allows a smaller mesh to be used in the hybrid ANN-FE model, resulting in savings in computation time. The hybrid model was developed for a river application, using the computational nodes located at the open boundaries to be the ANN nodes for the ANN-FE hybrid model. Real-time coupling between the ANN and FE models was achieved, and a reduction is CPU time of more than 25% was obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A useful patient admission prediction model that helps the emergency department of a hospital admit patients efficiently is of great importance. It not only improves the care quality provided by the emergency department but also reduces waiting time of patients. This paper proposes an automatic prediction method for patient admission based on a fuzzy min–max neural network (FMM) with rules extraction. The FMM neural network forms a set of hyperboxes by learning through data samples, and the learned knowledge is used for prediction. In addition to providing predictions, decision rules are extracted from the FMM hyperboxes to provide an explanation for each prediction. In order to simplify the structure of FMM and the decision rules, an optimization method that simultaneously maximizes prediction accuracy and minimizes the number of FMM hyperboxes is proposed. Specifically, a genetic algorithm is formulated to find the optimal configuration of the decision rules. The experimental results using a large data set consisting of 450740 real patient records reveal that the proposed method achieves comparable or even better prediction accuracy than state-of-the-art classifiers with the additional ability to extract a set of explanatory rules to justify its predictions.