3 resultados para the SIMPLE algorithm
em Dalarna University College Electronic Archive
Resumo:
This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.
Resumo:
The problem of scheduling a parallel program presented by a weighted directed acyclic graph (DAG) to the set of homogeneous processors for minimizing the completion time of the program has been extensively studied as academic optimization problem which occurs in optimizing the execution time of parallel algorithm with parallel computer.In this paper, we propose an application of the Ant Colony Optimization (ACO) to a multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and each operation demands a setup time on the machines. The problem seeks to compose a schedule that minimizes the total completion time.We therefore rely on heuristics to find solutions since solution methods are not feasible for most problems as such. This novel heuristic searching approach to the multiprocessor based on the ACO algorithm a collection of agents cooperate to effectively explore the search space.A computational experiment is conducted on a suit of benchmark application. By comparing our algorithm result obtained to that of previous heuristic algorithm, it is evince that the ACO algorithm exhibits competitive performance with small error ratio.
Resumo:
We consider methods for estimating causal effects of treatment in the situation where the individuals in the treatment and the control group are self selected, i.e., the selection mechanism is not randomized. In this case, simple comparison of treated and control outcomes will not generally yield valid estimates of casual effects. The propensity score method is frequently used for the evaluation of treatment effect. However, this method is based onsome strong assumptions, which are not directly testable. In this paper, we present an alternative modeling approachto draw causal inference by using share random-effect model and the computational algorithm to draw likelihood based inference with such a model. With small numerical studies and a real data analysis, we show that our approach gives not only more efficient estimates but it is also less sensitive to model misspecifications, which we consider, than the existing methods.