8 resultados para statistical equivalence

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solutions to combinatorial optimization problems, such as problems of locating facilities, frequently rely on heuristics to minimize the objective function. The optimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. Pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small, almost dormant, branch of the literature suggests using statistical principles to estimate the minimum and its bounds as a tool to decide upon stopping and evaluating the quality of the solution. In this paper we examine the functioning of statistical bounds obtained from four different estimators by using simulated annealing on p-median test problems taken from Beasley’s OR-library. We find the Weibull estimator and the 2nd order Jackknife estimator preferable and the requirement of sample size to be about 10 being much less than the current recommendation. However, reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality and we give a simple statistic useful for checking the quality. We end the paper with an illustration on using statistical bounds in a problem of locating some 70 distribution centers of the Swedish Post in one Swedish region. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision.  Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes.  The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Misoprostol is established for the treatment of incomplete abortion but has not been systematically assessed when provided by midwives at district level in a low-resource setting. We investigated the effectiveness and safety of midwives diagnosing and treating incomplete abortion with misoprostol, compared with physicians. METHODS: We did a multicentre randomised controlled equivalence trial at district level at six facilities in Uganda. Eligibility criteria were women with signs of incomplete abortion. We randomly allocated women with first-trimester incomplete abortion to clinical assessment and treatment with misoprostol either by a physician or a midwife. The randomisation (1:1) was done in blocks of 12 and was stratified for study site. Primary outcome was complete abortion not needing surgical intervention within 14-28 days after initial treatment. The study was not masked. Analysis of the primary outcome was done on the per-protocol population with a generalised linear-mixed effects model. The predefined equivalence range was -4% to 4%. The trial was registered at ClinicalTrials.gov, number NCT01844024. FINDINGS: From April 30, 2013, to July 21, 2014, 1108 women were assessed for eligibility. 1010 women were randomly assigned to each group (506 to midwife group and 504 to physician group). 955 women (472 in the midwife group and 483 in the physician group) were included in the per-protocol analysis. 452 (95·8%) of women in the midwife group had complete abortion and 467 (96·7%) in the physician group. The model-based risk difference for midwife versus physician group was -0·8% (95% CI -2·9 to 1·4), falling within the predefined equivalence range (-4% to 4%). The overall proportion of women with incomplete abortion was 3·8% (36/955), similarly distributed between the two groups (4·2% [20/472] in the midwife group, 3·3% [16/483] in the physician group). No serious adverse events were recorded. INTERPRETATION: Diagnosis and treatment of incomplete abortion with misoprostol by midwives is equally safe and effective as when provided by physicians, in a low-resource setting. Scaling up midwives' involvement in treatment of incomplete abortion with misoprostol at district level would increase access to safe post-abortion care. FUNDING: The Swedish Research Council, Karolinska Institutet, and Dalarna University.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized linear mixed models are flexible tools for modeling non-normal data and are useful for accommodating overdispersion in Poisson regression models with random effects. Their main difficulty resides in the parameter estimation because there is no analytic solution for the maximization of the marginal likelihood. Many methods have been proposed for this purpose and many of them are implemented in software packages. The purpose of this study is to compare the performance of three different statistical principles - marginal likelihood, extended likelihood, Bayesian analysis-via simulation studies. Real data on contact wrestling are used for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study aimed to assess women´s acceptability of diagnosis and treatment of incomplete abortion with misoprostol by midwives, compared with physicians. METHODS: This was an analysis of secondary outcomes from a multi-centre randomized controlled equivalence trial at district level in Uganda. Women with first trimester incomplete abortion were randomly allocated to clinical assessment and treatment with misoprostol by a physician or a midwife. The randomisation (1:1) was done in blocks of 12 and stratified for health care facility. Acceptability was measured in expectations and satisfaction at a follow up visit 14-28 days following treatment. Analysis of women's overall acceptability was done using a generalized linear mixed-effects model with an equivalence range of -4% to 4%. The study was not masked. The trial is registered at ClinicalTrials.org, NCT 01844024. RESULTS: From April 2013 to June 2014, 1108 women were assessed for eligibility of which 1010 were randomized (506 to midwife and 504 to physician). 953 women were successfully followed up and included in the acceptability analysis. 95% (904) of the participants found the treatment satisfactory and overall acceptability was found to be equivalent between the two study groups. Treatment failure, not feeling calm and safe following treatment, experiencing severe abdominal pain or heavy bleeding following treatment, were significantly associated with non-satisfaction. No serious adverse events were recorded. CONCLUSIONS: Treatment of incomplete abortion with misoprostol by midwives and physician was highly, and equally, acceptable to women. TRIAL REGISTRATION: ClinicalTrials.gov NCT01844024.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.