4 resultados para intraindividual variability

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The features of non-native speech which distinguish it from native speech are often difficult to pin down. It is possible to be a native speaker of any of a vast number of varieties of English. These varieties each have their phonetic characteristics which allow them to be identified by speakers of the varieties in question and by others. The phonetic differences between the accents represented by these varieties are very great. It is impossible to indicate any particular configuration of vowels in the acoustic vowel space or set of consonant articulations which all native-speaker varieties of English have in common and which non-native speakers do not share. This study considers the vowel quality in a single word by native and non-native speakers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.