5 resultados para gravitational waves
em Dalarna University College Electronic Archive
Resumo:
In this paper the behavior of matter waves in suddenly terminated potential structures is investigated numerically. It is shown that there is no difference between a fully quantum mechanical treatment and a semiclassical one with regards to energy redistribution. For the quantum case it is demonstrated that there can be substantial reflection at the termination. The neglect of backscattering by the semiclassical method brings about major differences in the case of low kinetic energies. A simple phenomenological model is shown to partially explain the observed backscattering using dynamics of reduced dimensionality.
Resumo:
In this paper we present an analysis of how matter waves, guided as propagating modes in potential structures, are split under adiabatic conditions. The description is formulated in terms of localized states obtained through a unitary transformation acting on the mode functions. The mathematical framework results in coupled propagation equations that are decoupled in the asymptotic regions as well before as after the split. The resulting states have the advantage of describing propagation in situations, for instance matter-wave interferometers, where local perturbations make the transverse modes of the guiding potential unsuitable as a basis. The different regimes of validity of adiabatic propagation schemes based on localized versus delocalized basis states are also outlined. Nontrivial dynamics for superposition states propagating through split potential structures is investigated through numerical simulations. For superposition states the influence of longitudinal wave-packet extension on the localization is investigated and shown to be accurately described in quantitative terms using the adiabatic formulations presented here.
Resumo:
Ultracold gases in ring geometries hold promise for significant improvements of gyroscopic sensitivity. Recent experiments have realized atomic and molecular storage rings with radii in the centimeter range, sizes whose practical use in inertial sensors requires velocities significantly in excess of typical recoil velocities. We use a combination of analytical and numerical techniques to study the coherent acceleration of matter waves in circular waveguides, with particular emphasis on its impact on single-mode propagation. In the simplest case we find that single-mode propagation is best maintained by the application of time-dependent acceleration force with the temporal profile of a Blackmann pulse. We also assess the impact of classical noise on the acceleration process.
Resumo:
In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.