4 resultados para Statistical Language Model
em Dalarna University College Electronic Archive
Resumo:
Denna avhandling tar sin utgångspunkt i ett ifrågasättande av effektiviteten i EU:s konditionalitetspolitik avseende minoritetsrättigheter. Baserat på den rationalistiska teoretiska modellen, External Incentives Model of Governance, syftar denna hypotesprövande avhandling till att förklara om tidsavståndet på det potentiella EU medlemskapet påverkar lagstiftningsnivån avseende minoritetsspråksrättigheter. Mätningen av nivån på lagstiftningen avseende minoritetsspråksrättigheter begränsas till att omfatta icke-diskriminering, användning av minoritetsspråk i officiella sammanhang samt minoriteters språkliga rättigheter i utbildningen. Metodologiskt används ett jämförande angreppssätt både avseende tidsramen för studien, som sträcker sig mellan 2003 och 2010, men även avseende urvalet av stater. På basis av det \"mest lika systemet\" kategoriseras staterna i tre grupper efter deras olika tidsavstånd från det potentiella EU medlemskapet. Hypotesen som prövas är följande: ju kortare tidsavstånd till det potentiella EU medlemskapet desto större sannolikhet att staternas lagstiftningsnivå inom de tre områden som studeras har utvecklats till en hög nivå. Studien visar att hypotesen endast bekräftas delvis. Resultaten avseende icke-diskriminering visar att sambandet mellan tidsavståndet och nivån på lagstiftningen har ökat markant under den undersökta tidsperioden. Detta samband har endast stärkts mellan kategorin av stater som ligger tidsmässigt längst bort ett potentiellt EU medlemskap och de två kategorier som ligger närmare respektive närmast ett potentiellt EU medlemskap. Resultaten avseende användning av minoritetsspråk i officiella sammanhang och minoriteters språkliga rättigheter i utbildningen visar inget respektive nästan inget samband mellan tidsavståndet och utvecklingen på lagstiftningen mellan 2003 och 2010.
Resumo:
In holistic theories of protolanguage, a vital step is the fractionation process where holistic utterances are broken down into segments, and segments associated with semantic components. One problem for this process may be the occurrence of counterexamples to any segment-meaning connection. The actual abundance of such counterexamples is a contentious issue \cite{smith06,taller07}. Here I present calculations of the prevalence of counterexamples in model languages. It is found that counterexamples are indeed abundant, much more numerous than positive examples for any plausible holistic language.
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.