6 resultados para Sound Localization
em Dalarna University College Electronic Archive
Resumo:
The objective of this thesis work, is to propose an algorithm to detect the faces in a digital image with complex background. A lot of work has already been done in the area of face detection, but drawback of some face detection algorithms is the lack of ability to detect faces with closed eyes and open mouth. Thus facial features form an important basis for detection. The current thesis work focuses on detection of faces based on facial objects. The procedure is composed of three different phases: segmentation phase, filtering phase and localization phase. In segmentation phase, the algorithm utilizes color segmentation to isolate human skin color based on its chrominance properties. In filtering phase, Minkowski addition based object removal (Morphological operations) has been used to remove the non-skin regions. In the last phase, Image Processing and Computer Vision methods have been used to find the existence of facial components in the skin regions.This method is effective on detecting a face region with closed eyes, open mouth and a half profile face. The experiment’s results demonstrated that the detection accuracy is around 85.4% and the detection speed is faster when compared to neural network method and other techniques.
Resumo:
Though sound symbolic words (onomatopoeia and mimetic words, or giongo and gitaigo in Japanese) exist in other languages, it would not be so easy to compare them to those in Japanese. This is because unlike in Japanese, in many other languages (here we see English and Spanish) sound symbolic words do not have distinctive forms that separate them immediately from the rest of categories of words. In Japanese, a sound symbolic word has a radical (that is based on the elaborated Japanese sound symbolic system), and often a suffix that shows subtle nuance. Together they give the word a distinctive form that differentiates it from other categories of words, though its grammatical functions could vary, especially in the case of mimetic words (gitaigo). Without such an obvious feature, in other languages, it would not be always easy to separate sound symbolic words from the rest. These expressions are extremely common and used in almost all types of text in Japanese, but their elaborated sound symbolic system and possibly their various grammatical functions are making giongo and gitaigo one of the most difficult challenges for the foreign students and translators. Studying the translation of these expressions into other languages might give some indication related to the comparison of Japanese sound symbolic words and those in other languages. Though sound symbolic words are present in many types of texts in Japanese, their functions in traditional forms of text (letters only) and manga (Japanese comics)are different and they should be treated separately. For example, in traditional types of text such as novels, the vast majority of the sound symbolic words used are mimetic words (gitaigo) and most of them are used as adverbs, whereas in manga, the majority of the sound symbolic words used (excluding those appear within the speech bubbles) are onomatopoeias (giongo) and often used on their own (i.e. not as a part of a sentence). Naturally, the techniques used to translate these expressions in the above two types of documents differ greatly. The presentation will focus on i) grammatical functions of Japanese sound symbolic words in traditional types of texts (novels/poems) and in manga works, and ii) whether their features and functions are maintained (i.e. whether they are translated as sound symbolic words) when translated into other languages (English and Spanish). The latter point should be related to a comparison of sound symbolic words in Japanese and other languages, which will be also discussed.
Resumo:
For the past few decades, researchers have increased our understanding of how sound functions within various audio–visual media formats. With a different focus in mind, this study aims to identify the roles and functions of sound in relation to the game form Audio Games, in order to explore the potential of sound when acting as an autonomous narrative form. Because this is still a relatively unexplored research field, the main purpose of this study is to help establish a theoretical ground and stimulate further research within the field of audio games. By adopting an interdisciplinary approach to the topic, this research relies on theoretical studies, examinations of audio games and contact with the audio game community. In order to reveal the roles of sound, the gathered data is analyzed according to both a contextual and a functional perspective. The research shows that a distinction between the terms ‘function’ and ‘role’ is important when analyzing sound in digital games. The analysis therefore results in the identification of two analytical levels that help define the functions and roles of an entity within a social context, named the Functional and the Interfunctional levels. In addition to successfully identifying three main roles of sound within audio games—each describing the relationship between sound and the entities game system, player and virtual environment—many other issues are also addressed. Consequently, and in accordance with its purpose, this study provides a broad foundation for further research of sound in both audio games and video games.
Resumo:
In this paper we present an analysis of how matter waves, guided as propagating modes in potential structures, are split under adiabatic conditions. The description is formulated in terms of localized states obtained through a unitary transformation acting on the mode functions. The mathematical framework results in coupled propagation equations that are decoupled in the asymptotic regions as well before as after the split. The resulting states have the advantage of describing propagation in situations, for instance matter-wave interferometers, where local perturbations make the transverse modes of the guiding potential unsuitable as a basis. The different regimes of validity of adiabatic propagation schemes based on localized versus delocalized basis states are also outlined. Nontrivial dynamics for superposition states propagating through split potential structures is investigated through numerical simulations. For superposition states the influence of longitudinal wave-packet extension on the localization is investigated and shown to be accurately described in quantitative terms using the adiabatic formulations presented here.
Resumo:
The problems of finding best facility locations require complete and accurate road network with the corresponding population data in a specific area. However the data obtained in road network databases usually do not fit in this usage. In this paper we propose our procedure of converting the road network database to a road graph which could be used in localization problems. The road network data come from the National road data base in Sweden. The graph derived is cleaned, and reduced to a suitable level for localization problems. The population points are also processed in ordered to match with that graph. The reduction of the graph is done maintaining most of the accuracy for distance measures in the network.
Resumo:
In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.