4 resultados para HARDENING

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allvac 718 Plus and Haynes 282 are relatively new precipitation hardening nickel based superalloys with good high temperature mechanical properties. In addition, the weldability of these superalloys enhances easy fabrication. The combination of high temperature capabilities and superior weldability is unmatched by other precipitation hardening superalloys and linked to the amount of the γ’ hardening precipitates in the materials. Hence, it is these properties that make Allvac 718 Plus and Haynes 282 desirable in the manufacture of hot sections of aero engine components. Studies show that cast products are less weldable than wrought products. Segregation of elements in the cast results in inhomogeneous composition which consequently diminishes weldability. Segregation during solidification of the cast products results in dendritic microstructure with the segregating elements occupying interdendritic regions. These segregating elements are trapped in secondary phases present alongside γ matrix. Studies show that in Allvac 718Plus, the segregating phase is Laves while in Haynes 282 the segregating phase is not yet fully determined. Thus, the present study investigated the effects of homogenization heat treatments in eliminating segregation in cast Allvac 718 Plus and Haynes 282. Paramount to the study was the effect of different homogenization temperatures and dwell time in the removal of the segregating phases. Experimental methods used to both qualify and quantify the segregating phases included SEM, EDX analysis, manual point count and macro Vickers hardness tests. Main results show that there is a reduction in the segregating phases in both materials as homogenization proceeds hence a disappearance of the dendritic structure. In Allvac 718 Plus, plate like structures is observed to be closely associated with the Laves phase at low temperatures and dwell times. In addition, Nb is found to be segregating in the interdendritic areas. The expected trend of increase in Laves as a result of the dissolution of the plate like structures at the initial stage of homogenization is only detectable for few cases. In Haynes 282, white and grey phases are clearly distinguished and Mo is observed to be segregating in interdendritic areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a non-homogeneity parameter, f(e), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose with this thesis was to examine the cold rolling mill located at Högskolan Dalarna and to stabilize the rolling process, to achieve steady state. Experiments with cold rolling of an aluminium strip have given results for rolling force, friction, reduction, strip tension and strain hardening. Results show that steady state has been found for the experiments with roll force and strain hardening, and not been found for the experiments with friction and reduction. Results show that increased strip tension gives lower roll forces. The roll force equation of Stone shows comparable results with reality for dry contact with reductions up to 30 %, but starts being incomparable with higher reductions. The roll force equation of Stone shows a bit higher roll forces than reality gave, but was comparable within reductions from 13 to 50 %. Experiments have shown that the aluminium strip has gone through strain hardening. Experiments show how the set roll gap did not yield the desired thickness reduction, there for the elastic spring constant for the rolling mill was examined and determined to be 417 N / mm for the specific alloy band. The influence of tension strip for roll force was examined and Results confirm the theory about how the roll force is decreased by increasing tension strip. The work rolls started to slip against the alumina strip as high tension strip; 70 N/mm2, gave low roll force; < 15kN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s− 1 at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneous and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain.