8 resultados para Combined Bending and Shear Actions
em Dalarna University College Electronic Archive
Resumo:
Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary energy demand. Consequently heat losses of the various systems have been studied. The systems have been modeled in TRNSYS and simulated with parameters identified from measurements. For almost all systems the flue gas losses are the main heat losses except for system 3 where store heat losses prevail. Relevant are also the heat losses of the burner and the boiler to the ambient. Significant leakage losses are noticed for system 3 and 4. For buildings with an open internal design system 1 is the most efficient solution. Other buildings should preferably apply system 3. The right choice of the system depends also on whether the heater is placed inside or outside of the heated are. A large potential for system optimization exist for all studied systems, which when applied could alter the relative merits of the different system types.
Resumo:
A Scots pine (Pinus sylvestris) progeny trial was established in 1990, in the southwestern part of Sweden. The offspring was from 30 plus trees. The trial is located on abandoned agricultural land and has a single tree block design with a variation in spacing. The trial has been damaged by voles. At a tree age of ten years, growth, damages and branch properties were estimated. An analysis of variance on height, diameter and stem volume shows significant difference between spacing and progenies as well as interactions between these factors. As indicated by a better annual height increment and fewer and thinner branches at each whorl the densest spacing has the highest potential to produce quality logs.There were also differences between progenies in growth and quality traits. Some progenies combined good growth and branch characters with low mortality, straight stems and few damages. Other progenies had superior volume production.
Resumo:
In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.
Resumo:
In this study the monitoring results of prototype installation of a recently developed solar combisystem have been evaluated. The system, that uses a water jacketed pellet stove as auxiliary heater, was installed in a single family house in Borlänge/Sweden. In order to allow an evaluation under realistic conditions the system has been monitored for a time period of one year. From the measurements of the system it could be seen that it is important that the pellet stove has a sufficient buffer store volume to minimize cycling. The measurements showed also that the stove gives a lower share of the produced heat to the water loop than measured under stationary conditions. The solar system works as expected and covers the heat demand during the summer and a part of the heat demand during spring and autumn. Potential for optimization exists for the parasitic electricity demand. The system consumes 680 kWh per year for pumps, valves and controllers which is more than 4% of the total primary heating energy demand.
Resumo:
Emissions are an important aspect of a pellet heating system. High carbon monoxide emissions are often caused by unnecessary cycling of the burner when the burner is operated below the lowest combustion power. Combining pellet heating systems with a solar heating system can significantly reduce cycling of the pellet heater and avoid the inefficient summer operation of the pellet heater. The aim of this paper was to study CO-emissions of the different types of systems and to compare the yearly CO-emissions obtained from simulations with the yearly CO-emissions calculated based on the values that are obtained by the standard test methods. The results showed that the yearly CO-emissions obtained from the simulations are significant higher than the yearly CO-emissions calculated based on the standard test methods. It is also shown that for the studied systems the average emissions under these realistic annual conditions were greater than the limit values of two Eco-labels. Furthermore it could be seen that is possible to almost halve the CO-emission if the pellet heater is combined with a solar heating system.
Resumo:
FP7- MacSheep