1 resultado para 070301 Agro-ecosystem Function and Prediction
em Dalarna University College Electronic Archive
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (10)
- Abertay Research Collections - Abertay University’s repository (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (5)
- Aston University Research Archive (37)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (86)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (104)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (79)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (9)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (21)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (3)
- DigitalCommons@The Texas Medical Center (15)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Earth Simulator Research Results Repository (1)
- Ecology and Society (4)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (3)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (23)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (19)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (13)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (58)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (41)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (6)
- Universidade de Madeira (1)
- Universidade do Minho (1)
- Universidade Federal do Pará (1)
- Universita di Parma (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Lausanne, Switzerland (72)
- Université de Montréal (3)
- Université de Montréal, Canada (9)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (3)
- University of Michigan (17)
- University of Queensland eSpace - Australia (112)
- University of Washington (6)
Resumo:
The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.