3 resultados para 070301 Agro-ecosystem Function and Prediction

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by cata lyzi ng ubiquitination of the S phase CDK inhibitor SIC1. SCF is composed of several evolutionarily conserved proteins, including ySKP1, CDC53 (Cullin), and the F-box protein CDC4. We isolated hSKP1 in a two-hybrid screen with hCUL1, the human homologue of CDC53. We showed that hCUL1 associates with hSKP1 in vivo and directly interacts with hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-Iike particle. Moreover, hCUL1 complements the growth defect of yeast CDC53^(ts) mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. These data demonstrated that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. However, purified human SCF complexes consisting of CUL1, SKP1, and SKP2 are inactive in vitro, suggesting that additional factors are required.

Subsequently, mammalian SCF ubiquitin ligases were shown to regulate various physiological processes by targeting important cellular regulators, like lĸBα, β-catenin, and p27, for ubiquitin-dependent proteolysis by the 26S proteasome. Little, however, is known about the regulation of various SCF complexes. By using sequential immunoaffinity purification and mass spectrometry, we identified proteins that interact with human SCF components SKP2 and CUL1 in vivo. Among them we identified two additional SCF subunits: HRT1, present in all SCF complexes, and CKS1, that binds to SKP2 and is likely to be a subunit of SCF5^(SKP2) complexes. Subsequent work by others demonstrated that these proteins are essential for SCF activity. We also discovered that COP9 Signalosome (CSN), previously described in plants as a suppressor of photomorphogenesis, associates with CUL1 and other SCF subunits in vivo. This interaction is evolutionarily conserved and is also observed with other Cullins, suggesting that all Cullin based ubiquitin ligases are regulated by CSN. CSN regulates Cullin Neddylation presumably through CSNS/JAB1, a stochiometric Signalosome subunit and a putative deneddylating enzyme. This work sheds light onto an intricate connection that exists between signal transduction pathways and protein degradation machinery inside the cell and sets stage for gaining further insights into regulation of protein degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression. Several microRNAs have been implicated in altering hematopoietic cell fate decisions. Importantly, deregulation of many microRNAs can lead to deleterious consequences in the hematopoietic system, including the onset of cancer, autoimmunity, or a failure to respond effectively to infection. As such, microRNAs fine-tune the balance between normal hematopoietic output and pathologic consequences. In this work, we explore the role of two microRNAs, miR-132 and miR-125b, in regulating hematopoietic stem cell (HSC) function and B cell development. In particular, we uncover the role of miR-132 in maintaining the appropriate balance between self-renewal, differentiation, and survival in aging HSCs by buffering the expression of a critical transcription factor, FOXO3. By maintain this balance, miR-132 may play a critical role in preventing aging-associated hematopoietic conditions such as autoimmune disease and cancer. We also find that miR-132 plays a critical role in B cell development by targeting a key transcription factor, Sox4, that is responsible for the differentiation of pro-B cells into pre-B cells. We find that miR-132 regulates B cell apoptosis, and by delivering miR-132 to mice that are predisposed to developing B cell cancers, we can inhibit the formation of these cancers and improve the survival of these mice. In addition to miR-132, we uncovered the role of another critical microRNA, miR-125b, that potentiates hematopoietic stem cell function. We found that enforced expression of miR-125b causes an aggressive myeloid leukemia by downregulation of its target Lin28a. Importantly, miR-125b also plays a critical role in inhibiting the formation of pro-B cells. Thus, we have discovered two microRNAs with important roles in regulating normal hematopoiesis, and whose dregulation can lead to deleterious consequences such as cancer in the aging hematopoietic system. Both miR-132 and miR-125b may therefore be targeted for therapeutics to inhibit age-related immune diseases associated with the loss of HSC function and cancer progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of prophage integration by phage λ and the function and structure of the chromosomal elements required for λ integration have been studied with the use of λ deletion mutants. Since attφ, the substrate of the integration enzymes, is not essential for λ growth, and since attφ resides in a portion of the λ chromosome which is not necessary for vegetative growth, viable λ deletion mutants were isolated and examined to dissect the structure of attφ.

Deletion mutants were selected from wild type populations by treating the phage under conditions where phage are inactivated at a rate dependent on the DNA content of the particles. A number of deletion mutants were obtained in this way, and many of these mutants proved to have defects in integration. These defects were defined by analyzing the properties of Int-promoted recombination in these att mutants.

The types of mutants found and their properties indicated that attφ has three components: a cross-over point which is bordered on either side by recognition elements whose sequence is specifically required for normal integration. The interactions of the recognition elements in Int-promoted recombination between att mutants was examined and proved to be quite complex. In general, however, it appears that the λ integration system can function with a diverse array of mutant att sites.

The structure of attφ was examined by comparing the genetic properties of various att mutants with their location in the λ chromosome. To map these mutants, the techniques of heteroduplex DNA formation and electron microscopy were employed. It was found that integration cross-overs occur at only one point in attφ and that the recognition sequences that direct the integration enzymes to their site of action are quite small, less than 2000 nucleotides each. Furthermore, no base pair homology was detected between attφ and its bacterial analog, attB. This result clearly demonstrates that λ integration can occur between chromosomes which have little, if any, homology. In this respect, λ integration is unique as a system of recombination since most forms of generalized recombination require extensive base pair homology.

An additional study on the genetic and physical distances in the left arm of the λ genome was described. Here, a large number of conditional lethal nonsense mutants were isolated and mapped, and a genetic map of the entire left arm, comprising a total of 18 genes, was constructed. Four of these genes were discovered in this study. A series of λdg transducing phages was mapped by heteroduplex electron microscopy and the relationship between physical and genetic distances in the left arm was determined. The results indicate that recombination frequency in the left arm is an accurate reflection of physical distances, and moreover, there do not appear to be any undiscovered genes in this segment of the genome.