3 resultados para moment based approach
em CUNY Academic Works
Resumo:
We employ a moment-based approach to empirically analyse farmer’s decisions about adoption of tube-well technology under depleting groundwater resources using a farm level data from 200 farming households in the Punjab province, Pakistan. The results indicate that the higher the expected profit the greater the probability of adoption. Similarly, with increasing variance the probability of adopting tube-well increases significantly indicating that farmers choose to adopt tube-well technology in order to hedge against production risks. Statistical non-significant the third moment i.e., skewness indicates that farmer generally do not consider downside yield risk when decide to adopt tube-well technology whereas highly significant fourth moment (kurtosis) employ that probability of adoption decreases as a result of extreme events in profit distribution. In addition, we show that land tenureship and three other exogenous variables, i.e., extension services, access to different sources of information and off-farm income play a significant role in the adoption process.
Resumo:
The clinical setting has become increasingly complex in recent years. Nurse educators have recognized the limitations of traditional pedagogies in the clinical setting. The need for innovative, student-centered learning is essential in order to transfer knowledge to practical situations and discover new ways of thinking about clinical situations. Narrative pedagogy which emphasizes how students learn and experience learning is an effective evidence-based approach to clinical education.
Resumo:
This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.