3 resultados para localizzazione,videogiochi,GILT,mercato videoludico,intervista,game localization,interview
em CUNY Academic Works
Resumo:
What does the lesson “Finding Citations,” the game “Trivial Pursuit,” and the mechanic “Bluffing” all have in common? In this bootcamp brainstorm facilitated by a CUNY professor, attendees are broken up into design teams whose job it is to enhance a traditional lesson with the mechanics of popular board games in only 20 minutes. Whether you have to teach the rules of citation or the rules of interviewing, there is usually a game plan that can help. This game teaches you how to integrate educational games into your classroom, while providing a fun introduction to the principles of game-based learning.
Resumo:
Games are known for leveraging enthusiasm, engagement, energy, knowledge, and passion on gamers; areas that are fundamentally important in higher education. Our panelists will share their perspectives on how Higher Education can take advantage of the potential of game based learning to create a more engaging student learning experien
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.