9 resultados para Explicit Integration
em CUNY Academic Works
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
Interoperability of water quality data depends on the use of common models, schemas and vocabularies. However, terms are usually collected during different activities and projects in isolation of one another, resulting in vocabularies that have the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, most water quality vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance or taxon, medium and procedure. This bundles information associated with separate elements from the OGC Observations and Measurements (O&M) model into a single slot. We have developed a water quality vocabulary, formalized using RDF, and published as Linked Data. The terms were extracted from existing water quality vocabularies. The observable property model is inspired by O&M but aligned with existing ontologies. The core is an OWL ontology that extends the QUDT ontology for Unit and QuantityKind definitions. We add classes to generalize the QuantityKind model, and properties for explicit description of the conflated concepts. The key elements are defined to be sub-classes or sub-properties of SKOS elements, which enables a SKOS view to be published through standard vocabulary APIs, alongside the full view. QUDT terms are re-used where possible, supplemented with additional Unit and QuantityKind entries required for water quality. Along with items from separate vocabularies developed for objects, media, and procedures, these are linked into definitions in the actual observable property vocabulary. Definitions of objects related to chemical substances are linked to items from the Chemical Entities of Biological Interest (ChEBI) ontology. Mappings to other vocabularies, such as DBPedia, are in separately maintained files. By formalizing the model for observable properties, and clearly labelling the separate concerns, water quality observations from different sources may be more easily merged and also transformed to O&M for cross-domain applications.
Resumo:
Due to the increase in water demand and hydropower energy, it is getting more important to operate hydraulic structures in an efficient manner while sustaining multiple demands. Especially, companies, governmental agencies, consultant offices require effective, practical integrated tools and decision support frameworks to operate reservoirs, cascades of run-of-river plants and related elements such as canals by merging hydrological and reservoir simulation/optimization models with various numerical weather predictions, radar and satellite data. The model performance is highly related with the streamflow forecast, related uncertainty and its consideration in the decision making. While deterministic weather predictions and its corresponding streamflow forecasts directly restrict the manager to single deterministic trajectories, probabilistic forecasts can be a key solution by including uncertainty in flow forecast scenarios for dam operation. The objective of this study is to compare deterministic and probabilistic streamflow forecasts on an earlier developed basin/reservoir model for short term reservoir management. The study is applied to the Yuvacık Reservoir and its upstream basin which is the main water supply of Kocaeli City located in the northwestern part of Turkey. The reservoir represents a typical example by its limited capacity, downstream channel restrictions and high snowmelt potential. Mesoscale Model 5 and Ensemble Prediction System data are used as a main input and the flow forecasts are done for 2012 year using HEC-HMS. Hydrometeorological rule-based reservoir simulation model is accomplished with HEC-ResSim and integrated with forecasts. Since EPS based hydrological model produce a large number of equal probable scenarios, it will indicate how uncertainty spreads in the future. Thus, it will provide risk ranges in terms of spillway discharges and reservoir level for operator when it is compared with deterministic approach. The framework is fully data driven, applicable, useful to the profession and the knowledge can be transferred to other similar reservoir systems.