3 resultados para Exclusion process, Multi-species, Multi-scale modelling

em CUNY Academic Works


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The presented work deals with the calibration of a 2D numerical model for the simulation of long term bed load transport. A settled basin along an alpine stream was used as a case study. The focus is to parameterise the used multi fractional transport model such that a dynamically balanced behavior regarding erosion and deposition is reached. The used 2D hydrodynamic model utilizes a multi-fraction multi-layer approach to simulate morphological changes and bed load transport. The mass balancing is performed between three layers: a top mixing layer, an intermediate subsurface layer and a bottom layer. Using this approach bears computational limitations in calibration. Due to the high computational demands, the type of calibration strategy is not only crucial for the result, but as well for the time required for calibration. Brute force methods such as Monte Carlo type methods may require a too large number of model runs. All here tested calibration strategies used multiple model runs utilising the parameterization and/or results from previous run. One concept was to reset to initial bed elevations after each run, allowing the resorting process to convert to stable conditions. As an alternative or in combination, the roughness was adapted, based on resulting nodal grading curves, from the previous run. Since the adaptations are a spatial process, the whole model domain is subdivided in homogeneous sections regarding hydraulics and morphological behaviour. For a faster optimization, the adaptation of the parameters is made section wise. Additionally, a systematic variation was done, considering results from previous runs and the interaction between sections. The used approach can be considered as similar to evolutionary type calibration approaches, but using analytical links instead of random parameter changes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Running hydrodynamic models interactively allows both visual exploration and change of model state during simulation. One of the main characteristics of an interactive model is that it should provide immediate feedback to the user, for example respond to changes in model state or view settings. For this reason, such features are usually only available for models with a relatively small number of computational cells, which are used mainly for demonstration and educational purposes. It would be useful if interactive modeling would also work for models typically used in consultancy projects involving large scale simulations. This results in a number of technical challenges related to the combination of the model itself and the visualisation tools (scalability, implementation of an appropriate API for control and access to the internal state). While model parallelisation is increasingly addressed by the environmental modeling community, little effort has been spent on developing a high-performance interactive environment. What can we learn from other high-end visualisation domains such as 3D animation, gaming, virtual globes (Autodesk 3ds Max, Second Life, Google Earth) that also focus on efficient interaction with 3D environments? In these domains high efficiency is usually achieved by the use of computer graphics algorithms such as surface simplification depending on current view, distance to objects, and efficient caching of the aggregated representation of object meshes. We investigate how these algorithms can be re-used in the context of interactive hydrodynamic modeling without significant changes to the model code and allowing model operation on both multi-core CPU personal computers and high-performance computer clusters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II.