11 resultados para Academic management
em CUNY Academic Works
Resumo:
This presentation will report on a cross-department collaboration between the library and the business/economics department at Lehman College to conduct information literacy instruction as a “flipped classroom.”
Resumo:
In the UK, urban river basins are particularly vulnerable to flash floods due to short and intense rainfall. This paper presents potential flood resilience approaches for the highly urbanised Wortley Beck river basin, south west of the Leeds city centre. The reach of Wortley Beck is approximately 6km long with contributing catchment area of 30km2 that drain into the River Aire. Lower Wortley has experienced regular flooding over the last few years from a range of sources, including Wortley Beck and surface and ground water, that affects properties both upstream and downstream of Farnley Lake as well as Wortley Ring Road. This has serious implications for society, the environment and economy activity in the City of Leeds. The first stage of the study involves systematically incorporating Wortley Beck’s land scape features on an Arc-GIS platform to identify existing green features in the region. This process also enables the exploration of potential blue green features: green spaces, green roofs, water retention ponds and swales at appropriate locations and connect them with existing green corridors to maximize their productivity. The next stage is involved in developing a detailed 2D urban flood inundation model for the Wortley Beck region using the CityCat model. CityCat is capable to model the effects of permeable/impermeable ground surfaces and buildings/roofs to generate flood depth and velocity maps at 1m caused by design storm events. The final stage of the study is involved in simulation of range of rainfall and flood event scenarios through CityCat model with different blue green features. Installation of other hard engineering individual property protection measures through water butts and flood walls are also incorporated in the CityCat model. This enables an integrated sustainable flood resilience strategy for this region.
Resumo:
Instrumentation and automation plays a vital role to managing the water industry. These systems generate vast amounts of data that must be effectively managed in order to enable intelligent decision making. Time series data management software, commonly known as data historians are used for collecting and managing real-time (time series) information. More advanced software solutions provide a data infrastructure or utility wide Operations Data Management System (ODMS) that stores, manages, calculates, displays, shares, and integrates data from multiple disparate automation and business systems that are used daily in water utilities. These ODMS solutions are proven and have the ability to manage data from smart water meters to the collaboration of data across third party corporations. This paper focuses on practical, utility successes in the water industry where utility managers are leveraging instantaneous access to data from proven, commercial off-the-shelf ODMS solutions to enable better real-time decision making. Successes include saving $650,000 / year in water loss control, safeguarding water quality, saving millions of dollars in energy management and asset management. Immediate opportunities exist to integrate the research being done in academia with these ODMS solutions in the field and to leverage these successes to utilities around the world.
Resumo:
Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.
Resumo:
Model Predictive Control (MPC) is a control method that solves in real time an optimal control problem over a finite horizon. The finiteness of the horizon is both the reason of MPC's success and its main limitation. In operational water resources management, MPC has been in fact successfully employed for controlling systems with a relatively short memory, such as canals, where the horizon length is not an issue. For reservoirs, which have generally a longer memory, MPC applications are presently limited to short term management only. Short term reservoir management can be effectively used to deal with fast process, such as floods, but it is not capable of looking sufficiently ahead to handle long term issues, such as drought. To overcome this limitation, we propose an Infinite Horizon MPC (IH-MPC) solution that is particularly suitable for reservoir management. We propose to structure the input signal by use of orthogonal basis functions, therefore reducing the optimization argument to a finite number of variables, and making the control problem solvable in a reasonable time. We applied this solution for the management of the Manantali Reservoir. Manantali is a yearly reservoir located in Mali, on the Senegal river, affecting water systems of Mali, Senegal, and Mauritania. The long term horizon offered by IH-MPC is necessary to deal with the strongly seasonal climate of the region.
Resumo:
The Short-term Water Information and Forecasting Tools (SWIFT) is a suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model components and utilities. Catchments are modeled using conceptual subareas and a node-link structure for channel routing. The tools comprise modules for calibration, model state updating, output error correction, ensemble runs and data assimilation. Given the combinatorial nature of the modelling experiments and the sub-daily time steps typically used for simulations, the volume of model configurations and time series data is substantial and its management is not trivial. SWIFT is currently used mostly for research purposes but has also been used operationally, with intersecting but significantly different requirements. Early versions of SWIFT used mostly ad-hoc text files handled via Fortran code, with limited use of netCDF for time series data. The configuration and data handling modules have since been redesigned. The model configuration now follows a design where the data model is decoupled from the on-disk persistence mechanism. For research purposes the preferred on-disk format is JSON, to leverage numerous software libraries in a variety of languages, while retaining the legacy option of custom tab-separated text formats when it is a preferred access arrangement for the researcher. By decoupling data model and data persistence, it is much easier to interchangeably use for instance relational databases to provide stricter provenance and audit trail capabilities in an operational flood forecasting context. For the time series data, given the volume and required throughput, text based formats are usually inadequate. A schema derived from CF conventions has been designed to efficiently handle time series for SWIFT.
Resumo:
Driven by Web 2.0 technology and the almost ubiquitous presence of mobile devices, Volunteered Geographic Information (VGI) is knowing an unprecedented growth. These notable technological advancements have opened fruitful perspectives also in the field of water management and protection, raising the demand for a reconsideration of policies which also takes into account the emerging trend of VGI. This research investigates the opportunity of leveraging such technology to involve citizens equipped with common mobile devices (e.g. tablets and smartphones) in a campaign of report of water-related phenomena. The work is carried out in collaboration with ADBPO - Autorità di bacino del fiume Po (Po river basin Authority), i.e. the entity responsible for the environmental planning and protection of the basin of river Po. This is the longest Italian river, spreading over eight among the twenty Italian Regions and characterized by complex environmental issues. To enrich ADBPO official database with user-generated contents, a FOSS (Free and Open Source Software) architecture was designed which allows not only user field-data collection, but also data Web publication through standard protocols. Open Data Kit suite allows users to collect georeferenced multimedia information using mobile devices equipped with location sensors (e.g. the GPS). Users can report a number of environmental emergencies, problems or simple points of interest related to the Po river basin, taking pictures of them and providing other contextual information. Field-registered data is sent to a server and stored into a PostgreSQL database with PostGIS spatial extension. GeoServer provides then data dissemination on the Web, while specific OpenLayers-based viewers were built to optimize data access on both desktop computers and mobile devices. Besides proving the suitability of FOSS in the frame of VGI, the system represents a successful prototype for the exploitation of user local, real-time information aimed at managing and protecting water resources.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.
Resumo:
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for large-scale systems. Nonetheless, a critical obstacle, which needs to be overcome in MPC, is the large computational burden when a large-scale system is considered or a long prediction horizon is involved. In order to solve this problem, we use an adaptive prediction accuracy (APA) approach that can reduce the computational burden almost by half. The proposed MPC scheme with this scheme is tested on the northern Dutch water system, which comprises Lake IJssel, Lake Marker, the River IJssel and the North Sea Canal. The simulation results show that by using the MPC-APA scheme, the computational time can be reduced to a large extent and a flood protection problem over longer prediction horizons can be well solved.
Resumo:
The Mauri Model DMF is unique in its approach to the management of water resources as the framework offers a transparent and inclusive approach to considering the environmental, economic, social and cultural aspects of the decisions being contemplated. The Mauri Model DMF is unique because it is capable of including multiple-worldviews and adopts mauri (intrinsic value or well-being) in the place of the more common monetised assessments of pseudo sustainability using Cost Benefit Analysis. The Mauri Model DMF uses a two stage process that first identifies participants’ worldviews and inherent bias regarding water resource management, and then facilitates transparent assessment of selected sustainability performance indicators. The assessment can then be contemplated as the separate environmental, economic, social and cultural dimensions of the decision, and collectively as an overall result; or the priorities associated with different worldviews can be applied to determine the sensitivity of the result to different cultural contexts or worldviews.