30 resultados para vision-based place recognition

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In order to maintain the most comprehensive structural annotation databases we must carry out regular updates for each proteome using the latest profile-profile fold recognition methods. The ability to carry out these updates on demand is necessary to keep pace with the regular updates of sequence and structure databases. Providing the highest quality structural models requires the most intensive profile-profile fold recognition methods running with the very latest available sequence databases and fold libraries. However, running these methods on such a regular basis for every sequenced proteome requires large amounts of processing power.In this paper we describe and benchmark the JYDE (Job Yield Distribution Environment) system, which is a meta-scheduler designed to work above cluster schedulers, such as Sun Grid Engine (SGE) or Condor. We demonstrate the ability of JYDE to distribute the load of genomic-scale fold recognition across multiple independent Grid domains. We use the most recent profile-profile version of our mGenTHREADER software in order to annotate the latest version of the Human proteome against the latest sequence and structure databases in as short a time as possible. RESULTS: We show that our JYDE system is able to scale to large numbers of intensive fold recognition jobs running across several independent computer clusters. Using our JYDE system we have been able to annotate 99.9% of the protein sequences within the Human proteome in less than 24 hours, by harnessing over 500 CPUs from 3 independent Grid domains. CONCLUSION: This study clearly demonstrates the feasibility of carrying out on demand high quality structural annotations for the proteomes of major eukaryotic organisms. Specifically, we have shown that it is now possible to provide complete regular updates of profile-profile based fold recognition models for entire eukaryotic proteomes, through the use of Grid middleware such as JYDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: The ability of a simple method (MODCHECK) to determine the sequence–structure compatibility of a set of structural models generated by fold recognition is tested in a thorough benchmark analysis. Four Model Quality Assessment Programs (MQAPs) were tested on 188 targets from the latest LiveBench-9 automated structure evaluation experiment. We systematically test and evaluate whether the MQAP methods can successfully detect native-likemodels. Results: We show that compared with the other three methods tested MODCHECK is the most reliable method for consistently performing the best top model selection and for ranking the models. In addition, we show that the choice of model similarity score used to assess a model's similarity to the experimental structure can influence the overall performance of these tools. Although these MQAP methods fail to improve the model selection performance for methods that already incorporate protein three dimension (3D) structural information, an improvement is observed for methods that are purely sequence-based, including the best profile–profile methods. This suggests that even the best sequence-based fold recognition methods can still be improved by taking into account the 3D structural information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses and compares the use of vision based and non-vision based technologies in developing intelligent environments. By reviewing the related projects that use vision based techniques in intelligent environment design, the achieved functions, technical issues and drawbacks of those projects are discussed and summarized, and the potential solutions for future improvement are proposed, which leads to the prospective direction of my PhD research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We argue that hyper-systemizing predisposes individuals to show talent, and review evidence that hyper-systemizing is part of the cognitive style of people with autism spectrum conditions (ASC). We then clarify the hyper-systemizing theory, contrasting it to the weak central coherence (WCC) and executive dysfunction (ED) theories. The ED theory has difficulty explaining the existence of talent in ASC. While both hyper-systemizing and WCC theories postulate excellent attention to detail, by itself excellent attention to detail will not produce talent. By contrast, the hyper-systemizing theory argues that the excellent attention to detail is directed towards detecting 'if p, then q' rules (or [input-operation-output] reasoning). Such law-based pattern recognition systems can produce talent in systemizable domains. Finally, we argue that the excellent attention to detail in ASC is itself a consequence of sensory hypersensitivity. We review an experiment from our laboratory demonstrating sensory hypersensitivity detection thresholds in vision. We conclude that the origins of the association between autism and talent begin at the sensory level, include excellent attention to detail and end with hyper-systemizing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban surveillance footage can be of poor quality, partly due to the low quality of the camera and partly due to harsh lighting and heavily reflective scenes. For some computer surveillance tasks very simple change detection is adequate, but sometimes a more detailed change detection mask is desirable, eg, for accurately tracking identity when faced with multiple interacting individuals and in pose-based behaviour recognition. We present a novel technique for enhancing a low-quality change detection into a better segmentation using an image combing estimator in an MRF based model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inference on the basis of recognition alone is assumed to occur prior to accessing further information (Pachur & Hertwig, 2006). A counterintuitive result of this is the “less-is-more” effect: a drop in the accuracy with which choices are made as to which of two or more items scores highest on a given criterion as more items are learned (Frosch, Beaman & McCloy, 2007; Goldstein & Gigerenzer, 2002). In this paper, we show that less-is-more effects are not unique to recognition-based inference but can also be observed with a knowledge-based strategy provided two assumptions, limited information and differential access, are met. The LINDA model which embodies these assumptions is presented. Analysis of the less-is-more effects predicted by LINDA and by recognition-driven inference shows that these occur for similar reasons and casts doubt upon the “special” nature of recognition-based inference. Suggestions are made for empirical tests to compare knowledge-based and recognition-based less-is-more effects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3D shape of an object and its 3D location have traditionally thought of as very separate entities, although both can be described within a single 3D coordinate frame. Here, 3D shape and location are considered as two aspects of a view-based approach to representing depth, avoiding the use of 3D coordinate frames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of memory deficits in older individuals have concentrated on their increased likelihood of forgetting events or details of events that were actually encountered (errors of omission). However mounting evidence demonstrates that normal cognitive aging also is associated with an increased propensity for errors of commission-shown in false alarms or false recognition. The present study examined the origins of this age difference. Older and younger adults each performed three types of memory tasks in which details of encountered items might influence performance. Although older adults showed greater false recognition of related lures on a standard (identical) old/new episodic recognition task, older and younger adults showed parallel effects of detail on repetition priming and meaning-based episodic recognition (decreased priming and decreased meaning-based recognition for different relative to same exemplars). The results suggest that the older adults encoded details but used them less effectively than the younger adults in the recognition context requiring their deliberate, controlled use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents recent developments to a vision-based traffic surveillance system which relies extensively on the use of geometrical and scene context. Firstly, a highly parametrised 3-D model is reported, able to adopt the shape of a wide variety of different classes of vehicle (e.g. cars, vans, buses etc.), and its subsequent specialisation to a generic car class which accounts for commonly encountered types of car (including saloon, batchback and estate cars). Sample data collected from video images, by means of an interactive tool, have been subjected to principal component analysis (PCA) to define a deformable model having 6 degrees of freedom. Secondly, a new pose refinement technique using “active” models is described, able to recover both the pose of a rigid object, and the structure of a deformable model; an assessment of its performance is examined in comparison with previously reported “passive” model-based techniques in the context of traffic surveillance. The new method is more stable, and requires fewer iterations, especially when the number of free parameters increases, but shows somewhat poorer convergence. Typical applications for this work include robot surveillance and navigation tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method.