76 resultados para vision for Computer
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper discusses and compares the use of vision based and non-vision based technologies in developing intelligent environments. By reviewing the related projects that use vision based techniques in intelligent environment design, the achieved functions, technical issues and drawbacks of those projects are discussed and summarized, and the potential solutions for future improvement are proposed, which leads to the prospective direction of my PhD research.
Resumo:
A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.
Resumo:
Optical characteristics of stirred curd were simultaneously monitored during syneresis in a 10-L cheese vat using computer vision and colorimetric measurements. Curd syneresis kinetic conditions were varied using 2 levels of milk pH (6.0 and 6.5) and 2 agitation speeds (12.1 and 27.2 rpm). Measured optical parameters were compared with gravimetric measurements of syneresis, taken simultaneously. The results showed that computer vision and colorimeter measurements have potential for monitoring syneresis. The 2 different phases, curd and whey, were distinguished by means of color differences. As syneresis progressed, the backscattered light became increasingly yellow in hue for circa 20 min for the higher stirring speed and circa 30 min for the lower stirring speed. Syneresis-related gravimetric measurements of importance to cheese making (e.g., curd moisture content, total solids in whey, and yield of whey) correlated significantly with computer vision and colorimetric measurements..
Resumo:
The meltabilities of 14 process cheese samples were determined at 2 and 4 weeks after manufacture using sensory analysis, a computer vision method, and the Olson and Price test. Sensory analysis meltability correlated with both computer vision meltability (R-2 = 0.71, P < 0.001) and Olson and Price meltability (R-2 = 0.69, P < 0.001). There was a marked lack of correlation between the computer vision method and the Olson and Price test. This study showed that the Olson and Price test gave greater repeatability than the computer vision method. Results showed process cheese meltability decreased with increasing inorganic salt content and with lower moisture/fat ratios. There was very little evidence in this study to show that process cheese meltability changed between 2 and 4 weeks after manufacture..
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
The paper describes a novel integrated vision system in which two autonomous visual modules are combined to interpret a dynamic scene. The first module employs a 3D model-based scheme to track rigid objects such as vehicles. The second module uses a 2D deformable model to track non-rigid objects such as people. The principal contribution is a novel method for handling occlusion between objects within the context of this hybrid tracking system. The practical aim of the work is to derive a scene description that is sufficiently rich to be used in a range of surveillance tasks. The paper describes each of the modules in outline before detailing the method of integration and the handling of occlusion in particular. Experimental results are presented to illustrate the performance of the system in a dynamic outdoor scene involving cars and people.
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
In an immersive virtual environment, observers fail to notice the expansion of a room around them and consequently make gross errors when comparing the size of objects. This result is difficult to explain if the visual system continuously generates a 3-D model of the scene based on known baseline information from interocular separation or proprioception as the observer walks. An alternative is that observers use view-based methods to guide their actions and to represent the spatial layout of the scene. In this case, they may have an expectation of the images they will receive but be insensitive to the rate at which images arrive as they walk. We describe the way in which the eye movement strategy of animals simplifies motion processing if their goal is to move towards a desired image and discuss dorsal and ventral stream processing of moving images in that context. Although many questions about view-based approaches to scene representation remain unanswered, the solutions are likely to be highly relevant to understanding biological 3-D vision.
Resumo:
It is twenty-five years since the posthumous publication of David Marr's book Vision [1]. Only 35 years old when he died, Man, had already dramatically influenced vision research. His book, and the series of papers that preceded it, have had a lasting impact on the way that researchers approach human and computer vision.
Resumo:
Computer vision applications generally split their problem into multiple simpler tasks. Likewise research often combines algorithms into systems for evaluation purposes. Frameworks for modular vision provide interfaces and mechanisms for algorithm combination and network transparency. However, these don’t provide interfaces efficiently utilising the slow memory in modern PCs. We investigate quantitatively how system performance varies with different patterns of memory usage by the framework for an example vision system.
Resumo:
The motion of a car is described using a stochastic model in which the driving processes are the steering angle and the tangential acceleration. The model incorporates exactly the kinematic constraint that the wheels do not slip sideways. Two filters based on this model have been implemented, namely the standard EKF, and a new filter (the CUF) in which the expectation and the covariance of the system state are propagated accurately. Experiments show that i) the CUF is better than the EKF at predicting future positions of the car; and ii) the filter outputs can be used to control the measurement process, leading to improved ability to recover from errors in predictive tracking.
Resumo:
A new algorithm is described for refining the pose of a model of a rigid object, to conform more accurately to the image structure. Elemental 3D forces are considered to act on the model. These are derived from directional derivatives of the image local to the projected model features. The convergence properties of the algorithm is investigated and compared to a previous technique. Its use in a video sequence of a cluttered outdoor traffic scene is also illustrated and assessed.
Resumo:
The paper reports an interactive tool for calibrating a camera, suitable for use in outdoor scenes. The motivation for the tool was the need to obtain an approximate calibration for images taken with no explicit calibration data. Such images are frequently presented to research laboratories, especially in surveillance applications, with a request to demonstrate algorithms. The method decomposes the calibration parameters into intuitively simple components, and relies on the operator interactively adjusting the parameter settings to achieve a visually acceptable agreement between a rectilinear calibration model and his own perception of the scene. Using the tool, we have been able to calibrate images of unknown scenes, taken with unknown cameras, in a matter of minutes. The standard of calibration has proved to be sufficient for model-based pose recovery and tracking of vehicles.
Resumo:
This workshop paper reports recent developments to a vision system for traffic interpretation which relies extensively on the use of geometrical and scene context. Firstly, a new approach to pose refinement is reported, based on forces derived from prominent image derivatives found close to an initial hypothesis. Secondly, a parameterised vehicle model is reported, able to represent different vehicle classes. This general vehicle model has been fitted to sample data, and subjected to a Principal Component Analysis to create a deformable model of common car types having 6 parameters. We show that the new pose recovery technique is also able to operate on the PCA model, to allow the structure of an initial vehicle hypothesis to be adapted to fit the prevailing context. We report initial experiments with the model, which demonstrate significant improvements to pose recovery.
Resumo:
This paper reports the development of a highly parameterised 3-D model able to adopt the shapes of a wide variety of different classes of vehicles (cars, vans, buses, etc), and its subsequent specialisation to a generic car class which accounts for most commonly encountered types of car (includng saloon, hatchback and estate cars). An interactive tool has been developed to obtain sample data for vehicles from video images. A PCA description of the manually sampled data provides a deformable model in which a single instance is described as a 6 parameter vector. Both the pose and the structure of a car can be recovered by fitting the PCA model to an image. The recovered description is sufficiently accurate to discriminate between vehicle sub-classes.