54 resultados para visible and infrared spectroscopy

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of visible-near infrared spectra, obtained using a light backscatter sensor, in conjunction with chemometrics, to predict curd moisture and whey fat content in a cheese vat was examined. A three-factor (renneting temperature, calcium chloride, cutting time), central composite design was carried out in triplicate. Spectra (300–1,100 nm) of the product in the cheese vat were captured during syneresis using a prototype light backscatter sensor. Stirring followed upon cutting the gel, and samples of curd and whey were removed at 10 min intervals and analyzed for curd moisture and whey fat content. Spectral data were used to develop models for predicting curd moisture and whey fat contents using partial least squares regression. Subjecting the spectral data set to Jack-knifing improved the accuracy of the models. The whey fat models (R = 0.91, 0.95) and curd moisture model (R = 0.86, 0.89) provided good and approximate predictions, respectively. Visible-near infrared spectroscopy was found to have potential for the prediction of important syneresis indices in stirred cheese vats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary synthesis methods, as originally described by Dobrowolski, have been shown in previous literature to be an effective method of obtaining anti-reflection coating designs. To make this method even more effective, the combination of a good starting design, the best suited thin-film materials, a realistic optimization target function and a non-gradient optimization method are used in an algorithm written for a PC. Several broadband anti-reflection designs obtained by this new design method are given as examples of its usefulness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a combination of idealized radiative transfer simulations and a case study from the first field campaign of the Saharan Mineral Dust Experiment (SAMUM) in southern Morocco, this paper provides a systematic assessment of the limitations of the widely used Spinning Enhanced Visible and Infrared Imager (SEVIRI) red-green-blue (RGB) thermal infrared dust product. Both analyses indicate that the ability of the product to identify dust, via its characteristic pink coloring, is strongly dependent on the column water vapor, the lower tropospheric lapse rate, and dust altitude. In particular, when column water vapor exceeds ∼20–25 mm, dust presence, even for visible optical depths of the order 0.8, is effectively masked. Variability in dust optical properties also has a marked impact on the imagery, primarily as a result of variability in dust composition. There is a moderate sensitivity to the satellite viewing geometry, particularly in moist conditions. The underlying surface can act to confound the signal seen through variations in spectral emissivity, which are predominantly manifested in the 8.7μm SEVIRI channel. In addition, if a temperature inversion is present, typical of early morning conditions over the Sahara and Sahel, an increased dust loading can actually reduce the pink coloring of the RGB image compared to pristine conditions. Attempts to match specific SEVIRI observations to simulations using SAMUM measurements are challenging because of high uncertainties in surface skin temperature and emissivity. Recommendations concerning the use and interpretation of the SEVIRI RGB imagery are provided on the basis of these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gas phase reactions Of SiCl4 and Si2Cl6 With CH3OH and C2H5OH have been investigated using both mass spectrometry and matrix isolation techniques. SiCl4 reacts with both CH3OH and C2H5OH upon mixing of the vapours for times in excess of 3 h to generate the HCl-elimination products SiCl3OR (R = CH3 or C2H5). The identity of these products is confirmed by deuteration experiments and by ab initio calculations at the HF/6-31G(d) level. Further products are generated when the mixture is passed through a tube heated to 750degreesC. Si2Cl6 reacts with CH3OH and C2H5OH via a different mechanism in which the Si-Si bond is cleaved to yield SiCl3OR and HCl. Other products of the type SiCl4-n(OCH3)(n) are tentatively identified by a combination of mass spectrometric and matrix isolation measurements. These latter products indicate further replacement of Cl atoms by OR groups as a result of reaction of CH3OH or C2H5OH with the initial product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000–900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of near infrared spectroscopy in conjunction with partial least squares regression to predict Miscanthus xgiganteus and short rotation coppice willow quality indices was examined. Moisture, calorific value, ash and carbon content were predicted with a root mean square error of cross validation of 0.90% (R2 = 0.99), 0.13 MJ/kg (R2 = 0.99), 0.42% (R2 = 0.58), and 0.57% (R2 = 0.88), respectively. The moisture and calorific value prediction models had excellent accuracy while the carbon and ash models were fair and poor, respectively. The results indicate that near infrared spectroscopy has the potential to predict quality indices of dedicated energy crops, however the models must be further validated on a wider range of samples prior to implementation. The utilization of such models would assist in the optimal use of the feedstock based on its biomass properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the potential of mid-infrared spectroscopy coupled with multidimensional statistical analysis for the prediction of processed cheese instrumental texture and meltability attributes. Processed cheeses (n = 32) of varying composition were manufactured in a pilot plant. Following two and four weeks storage at 4 degrees C samples were analysed using texture profile analysis, two meltability tests (computer vision, Olson and Price) and mid-infrared spectroscopy (4000-640 cm(-1)). Partial least squares regression was used to develop predictive models for all measured attributes. Five attributes were successfully modelled with varying degrees of accuracy. The computer vision meltability model allowed for discrimination between high and low melt values (R-2 = 0.64). The hardness and springiness models gave approximate quantitative results (R-2 = 0.77) and the cohesiveness (R-2 = 0.81) and Olson and Price meltability (R-2 = 0.88) models gave good prediction results. (c) 2006 Elsevier Ltd. All rights reserved..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the potential of mid-infrared spectroscopy in conjunction with partial least squares (PLS) regression to predict various quality parameters in cheddar cheese. Cheddar cheeses (n = 24) were manufactured and stored at 8 degrees C for 12 mo. Mid-infrared spectra (640 to 4000/cm) were recorded after 4, 6, 9, and 12 mo storage. At 4, 6, and 9 mo, the water-soluble nitrogen (WSN) content of the samples was determined and the samples were also evaluated for 11 sensory texture attributes using descriptive sensory analysis. The mid-infrared spectra were subjected to a number of pretreatments, and predictive models were developed for all parameters. Age was predicted using scatter-corrected, 1st derivative spectra with a root mean square error of cross-validation (RMSECV) of 1 mo, while WSN was predicted using 1st derivative spectra (RMSECV = 2.6%). The sensory texture attributes most successfully predicted were rubbery, crumbly, chewy, and massforming. These attributes were modeled using 2nd derivative spectra and had, corresponding RMSECV values in the range of 2.5 to 4.2 on a scale of 0 to 100. It was concluded that mid-infrared spectroscopy has the potential to predict age, WSN, and several sensory texture attributes of cheddar cheese..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the current state of development of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality control, and authenticity determination in cheese processing. Infrared spectroscopy has been identified as an ideal process analytical technology tool, and recent publications have demonstrated the potential of both NIR and MIR spectroscopy, coupled with chemometric techniques, for monitoring coagulation, syneresis, and ripening as well as determination of authenticity, composition, sensory, and rheological parameters. Recent research is reviewed and compared on the basis of experimental design, spectroscopic and chemometric methods employed to assess the potential of infrared spectroscopy as a technology for improving process control and quality in cheese manufacture. Emerging research areas for these technologies, such as cheese authenticity and food chain traceability, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel combination of site-specific isotope labelling, polarised infrared spectroscopy and molecular combing reveal local orientational ordering in the fibril-forming peptide YTIAALLSPYSGGRADS. Use of 13C-18O labelled alanine residues demonstrates that the Nterminal end of the peptide is incorporated into the cross-beta structure, while the C-terminal end shows orientational disorder

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent laboratory measurements show that absorption by the water vapour continuum in near-infrared windows may be about an order of magnitude higher than assumed in many radiation codes. The radiative impact of the continuum at visible and near-infrared wavelengths is examined for the present day and for a possible future warmer climate (with a global-mean total column water increase of 33%). The calculations use a continuum model frequently used in climate models (‘CKD’) and a continuum model where absorption is enhanced at wavelengths greater than 1 µm based on recent measurements (‘CAVIAR’). The continuum predominantly changes the partitioning between solar radiation absorbed by the surface and the atmosphere; changes in top-of-atmosphere net irradiances are smaller. The global-mean clear-sky atmospheric absorption is enhanced by 1.5 W m−2 (about 2%) and 2.8 W m−2 (about 3.5%) for CKD and CAVIAR respectively, relative to a hypothetical no-continuum case, with all-sky enhancements about 80% of these values. The continuum is, in relative terms, more important for radiation budget changes between the present day and a possible future climate. Relative to the no-continuum case, the increase in global-mean clear-sky absorption is 8% higher using CKD and almost 20% higher using CAVIAR; all-sky enhancements are about half these values. The effect of the continuum is estimated for the solar component of the water vapour feedback, the reduction in downward surface irradiance and precipitation change in a warmer world. For CKD and CAVIAR respectively, and relative to the no-continuum case, the solar component of the water vapour feedback is enhanced by about 4 and 9%, the change in clear-sky downward surface irradiance is 7 and 18% more negative, and the global-mean precipitation response decreases by 1 and 4%. There is a continued need for improved continuum measurements, especially at atmospheric temperatures and at wavelengths below 2 µm.