29 resultados para vibration active control
em CentAUR: Central Archive University of Reading - UK
Resumo:
The use of magnetic fluids in controlling rod vibrations is investigated. A prototype of ferrofluid vibration damper is designed and experimentally set up based on the principle of anti-resonance. The efficiency of this damping system is verified in experiments and well explained with classical equations of motion. The improvement of the present system towards active control of rod vibration is also discussed.
Resumo:
This report describes the concept for a clinical trial that uses carbamazepine as the gold-standard active control for a study of newly diagnosed patients. The authors describe an endpoint including efficacy and tolerability, and a stopping rule that uses a series of interim analyses in order to reach a conclusion as efficiently as possible without sacrificing reliability.
Resumo:
This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
This paper presents an approximate closed form sample size formula for determining non-inferiority in active-control trials with binary data. We use the odds-ratio as the measure of the relative treatment effect, derive the sample size formula based on the score test and compare it with a second, well-known formula based on the Wald test. Both closed form formulae are compared with simulations based on the likelihood ratio test. Within the range of parameter values investigated, the score test closed form formula is reasonably accurate when non-inferiority margins are based on odds-ratios of about 0.5 or above and when the magnitude of the odds ratio under the alternative hypothesis lies between about 1 and 2.5. The accuracy generally decreases as the odds ratio under the alternative hypothesis moves upwards from 1. As the non-inferiority margin odds ratio decreases from 0.5, the score test closed form formula increasingly overestimates the sample size irrespective of the magnitude of the odds ratio under the alternative hypothesis. The Wald test closed form formula is also reasonably accurate in the cases where the score test closed form formula works well. Outside these scenarios, the Wald test closed form formula can either underestimate or overestimate the sample size, depending on the magnitude of the non-inferiority margin odds ratio and the odds ratio under the alternative hypothesis. Although neither approximation is accurate for all cases, both approaches lead to satisfactory sample size calculation for non-inferiority trials with binary data where the odds ratio is the parameter of interest.
Resumo:
This paper provides a comprehensive quantitative review of high quality randomized controlled trials of psychological therapies for anxiety disorders in children and young people. Using a systematic search for randomized controlled trials which included a control condition and reported data suitable for meta-analysis, 55 studies were included. Eligible studies were rated for methodological quality and outcome data were extracted and analyzed using standard methods. Trial quality was variable, many studies were underpowered and adverse effects were rarely assessed; however, quality ratings were higher for more recently published studies. Most trials evaluated cognitive behavior therapy or behavior therapy and most recruited both children and adolescents. Psychological therapy for anxiety in children and young people was moderately effective overall, but effect sizes were small to medium when psychological therapy was compared to an active control condition. The effect size for non-CBT interventions was not significant. Parental involvement in therapy was not associated with differential effectiveness. Treatment targeted at specific anxiety disorders, individual psychotherapy, and psychotherapy with older children and adolescents had effect sizes which were larger than effect sizes for treatments targeting a range of anxiety disorders, group psychotherapy, and psychotherapy with younger children. Few studies included an effective follow-up. Future studies should follow CONSORT reporting standards, be adequately powered, and assess follow-up. Research trials are unlikely to address all important clinical questions around treatment delivery. Thus, careful assessment and formulation will remain an essential part of successful psychological treatment for anxiety in children and young people.
Resumo:
This study examines whether combined cognitive bias modification for interpretative biases (CBM-I) and computerised cognitive behaviour therapy (C-CBT) can produce enhanced positive effects on interpretation biases and social anxiety. Forty socially anxious students were randomly assigned into two conditions, an intervention group (positive CBM-I + C-CBT) or an active control (neutral CBM-I + C-CBT). At pre-test, participants completed measures of social anxiety, interpretative bias, cognitive distortions, and social and work adjustment. They were exposed to 6 × 30 min sessions of web-based interventions including three sessions of either positive or neutral CBM-I and three sessions of C-CBT, one session per day. At post-test and two-week follow-up, participants completed the baseline measures. A combined positive CBM-I + C-CBT produced less negative interpretations of ambiguous situations than neutral CBM-I + C-CBT. The results also showed that both positive CBM-I + C-CBT and neutral CBM-I + C-CBT reduced social anxiety and cognitive distortions as well as improving work and social adjustment. However, greater effect sizes were observed in the positive CBM-I + C-CBT condition than the control. This indicates that adding positive CBM-I to C-CBT enhanced the training effects on social anxiety, cognitive distortions, and social and work adjustment compared to the neutral CBM-I + C-CBT condition.
Resumo:
The objective of a Visual Telepresence System is to provide the operator with a high fidelity image from a remote stereo camera pair linked to a pan/tilt device such that the operator may reorient the camera position by use of head movement. Systems such as these which utilise virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the displays is generally fixed and is most suitable only for viewing elements of a scene at a particular distance. To address such limitations, a prototype system has been developed where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator. This paper explores why it is necessary to actively adjust the display system as well as the cameras and justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms. The performance and accuracy of the system is assessed with respect to eye movement.
Resumo:
The paper analyzes the performance of the unconstrained filtered-x LMS (FxLMS) algorithm for active noise control (ANC), where we remove the constraints on the controller that it must be causal and has finite impulse response. It is shown that the unconstrained FxLMS algorithm always converges to, if stable, the true optimum filter, even if the estimation of the secondary path is not perfect, and its final mean square error is independent of the secondary path. Moreover, we show that the sufficient and necessary stability condition for the feedforward unconstrained FxLMS is that the maximum phase error of the secondary path estimation must be within 90°, which is the only necessary condition for the feedback unconstrained FxLMS. The significance of the analysis on a practical system is also discussed. Finally we show how the obtained results can guide us to design a robust feedback ANC headset.
Resumo:
Visual Telepresence system which utilize virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the display is fixed and is most suitable only for viewing elements of a scene at a particular distance. In such a system, the operator's ability to gaze around without use of head movement is severely limited. A trade off must be made between a poor viewing resolution or a narrow width of viewing field. To address these limitations a prototype system where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator has been developed. This paper explores the reasons why is necessary to actively adjust both the display system and the cameras and furthermore justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms, An assessment of the performance of the system against a fixed camera/display system when operators are assigned basic tasks involving depth and distance/size perception. The sensitivity to variations in transient performance of the display and camera vergence is also assessed.
Resumo:
Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented.
Resumo:
An adaptive tuned vibration absorber (ATVA) with a smart variable stiffness element is capable of retuning itself in response to a time-varying excitation frequency., enabling effective vibration control over a range of frequencies. This paper discusses novel methods of achieving variable stiffness in an ATVA by changing shape, as inspired by biological paradigms. It is shown that considerable variation in the tuned frequency can be achieved by actuating a shape change, provided that this is within the limits of the actuator. A feasible design for such an ATVA is one in which the device offers low resistance to the required shape change actuation while not being restricted to low values of the effective stiffness of the vibration absorber. Three such original designs are identified: (i) A pinned-pinned arch beam with fixed profile of slight curvature and variable preload through an adjustable natural curvature; (ii) a vibration absorber with a stiffness element formed from parallel curved beams of adjustable curvature vibrating longitudinally; (iii) a vibration absorber with a variable geometry linkage as stiffness element. The experimental results from demonstrators based on two of these designs show good correlation with the theory.
Resumo:
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled through use of a motorized chair that rotated the participant around his or her vertical axis. Chair rotation was made appropriate for the steering response of the participant or made inappropriate by rotating a proportion of the veridical amount. Large steering errors resulted from selective manipulation of retinal flow and gaze angle, and the pattern of errors provided strong evidence for an additive model of combination. Vestibular information had little or no effect on steering performance, suggesting that vestibular signals are not integrated with visual information for the control of steering at these speeds.
Resumo:
Eye-movements have long been considered a problem when trying to understand the visual control of locomotion. They transform the retinal image from a simple expanding pattern of moving texture elements (pure optic flow), into a complex combination of translation and rotation components (retinal flow). In this article we investigate whether there are measurable advantages to having an active free gaze, over a static gaze or tracking gaze, when steering along a winding path. We also examine patterns of free gaze behavior to determine preferred gaze strategies during active locomotion. Participants were asked to steer along a computer-simulated textured roadway with free gaze, fixed gaze, or gaze tracking the center of the roadway. Deviation of position from the center of the road was recorded along with their point of gaze. It was found that visually tracking the middle of the road produced smaller steering errors than for fixed gaze. Participants performed best at the steering task when allowed to sample naturally from the road ahead with free gaze. There was some variation in the gaze strategies used, but sampling was predominantly of areas proximal to the center of the road. These results diverge from traditional models of flow analysis.
Resumo:
This paper presents the Gentle/G integrated system for reach & grasp therapy retraining following brain injury. The design, control and integration of an experimental grasp assistance unit is described for use in robot assisted stroke rehabilitation. The grasp assist unit is intended to work with the hardware and software of the Gentle/S robot although the hardware could be adapted to other rehabilitation applications. When used with the Gentle/S robot a total of 6 active and 3 passive degrees of freedom are available to provide active, active assist or passive grasp retraining in combination with reaching movements in a reach-grasp-transfer-release sequence.