8 resultados para space cooling

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermochromic windows are able to modulate their transmittance in both the visible and the near-infrared field as a function of their temperature. As a consequence, they allow to control the solar gains in summer, thus reducing the energy needs for space cooling. However, they may also yield a reduction in the daylight availability, which results in the energy consumption for indoor artificial lighting being increased. This paper investigates, by means of dynamic simulations, the application of thermochromic windows to an existing office building in terms of energy savings on an annual basis, while also focusing on the effects in terms of daylighting and thermal comfort. In particular, due attention is paid to daylight availability, described through illuminance maps and by the calculation of the daylight factor, which in several countries is subject thresholds. The study considers both a commercially available thermochromic pane and a series of theoretical thermochromic glazing. The expected performance is compared to static clear and reflective insulating glass units. The simulations are repeated in different climatic conditions, showing that the overall energy savings compared to clear glazing can range from around 5% for cold climates to around 20% in warm climates, while not compromising daylight availability. Moreover the role played by the transition temperature of the pane is examined, pointing out an optimal transition temperatures that is irrespective of the climatic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an investigation of the natural ventilation cooling potential (NVCP) of office buildings in the five generally recognised climate zones in China using the Thermal Resistance Ventilation (TRV) model, which is a simplified, coupled, thermal and airflow model. The acceptable operative temperature for naturally conditioned space supplied by the ASHARE Standard 55-2004 has been used for the comfort temperature setting. Dynamic simulations for a typical office room in the five representative cities, which are Harbin, Beijing, Shanghai, Kunming and Guangzhou, have been carried out. The study demonstrates that the NVCP depends on the multiple impacts of climate, the building's thermal characteristics, internal gains, ventilation profiles and regimes. The work shows how the simplified method can be used to generate detailed, indoor, operative temperature data based on the various building conditions and control profiles which are used to investigate the NVCP at the strategic design stage. The simulation results presented in this paper can be used as a reference guideline for natural ventilation design in China.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anthropogenic heat emissions generated by human activities in London are analysed in detail for 2005–2008 and considered in context of long-term past and future trends (1970–2025). Emissions from buildings, road traffic and human metabolism are finely resolved in space (30 min) and time (200 × 200 m2). Software to compute and visualize the results is provided. The annual mean anthropogenic heat flux for Greater London is 10.9 W m−2 for 2005–2008, with the highest peaks in the central activities zone (CAZ) associated with extensive service industry activities. Towards the outskirts of the city, emissions from the domestic sector and road traffic dominate. Anthropogenic heat is mostly emitted as sensible heat, with a latent heat fraction of 7.3% and a heat-to-wastewater fraction of 12%; the implications related to the use of evaporative cooling towers are briefly addressed. Projections indicate a further increase of heat emissions within the CAZ in the next two decades related to further intensification of activities within this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nocturnal cooling of air within a forest canopy and the resulting temperature profile may drive local thermally driven motions, such as drainage flows, which are believed to impact measurements of ecosystem–atmosphere exchange. To model such flows, it is necessary to accurately predict the rate of cooling. Cooling occurs primarily due to radiative heat loss. However, much of the radiative loss occurs at the surface of canopy elements (leaves, branches, and boles of trees), while radiative divergence in the canopy air space is small due to high transmissivity of air. Furthermore, sensible heat exchange between the canopy elements and the air space is slow relative to radiative fluxes. Therefore, canopy elements initially cool much more quickly than the canopy air space after the switch from radiative gain during the day to radiative loss during the night. Thus in modeling air cooling within a canopy, it is not appropriate to neglect the storage change of heat in the canopy elements or even to assume equal rates of cooling of the canopy air and canopy elements. Here a simple parameterization of radiatively driven cooling of air within the canopy is presented, which accounts implicitly for radiative cooling of the canopy volume, heat storage in the canopy elements, and heat transfer between the canopy elements and the air. Simulations using this parameterization are compared to temperature data from the Morgan–Monroe State Forest (IN, USA) FLUXNET site. While the model does not perfectly reproduce the measured rates of cooling, particularly near the top of the canopy, the simulated cooling rates are of the correct order of magnitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the 1960s and early 1970s sea surface temperatures in the North Atlantic Ocean cooled rapidly. There is still considerable uncertainty about the causes of this event, although various mechanisms have been proposed. In this observational study it is demonstrated that the cooling proceeded in several distinct stages. Cool anomalies initially appeared in the mid-1960s in the Nordic Seas and Gulf Stream Extension, before spreading to cover most of the Subpolar Gyre. Subsequently, cool anomalies spread into the tropical North Atlantic before retreating, in the late 1970s, back to the Subpolar Gyre. There is strong evidence that changes in atmospheric circulation, linked to a southward shift of the Atlantic ITCZ, played an important role in the event, particularly in the period 1972-76. Theories for the cooling event must account for its distinctive space-time evolution. Our analysis suggests that the most likely drivers were: 1) The “Great Salinity Anomaly” of the late 1960s; 2) An earlier warming of the subpolar North Atlantic, which may have led to a slow-down in the Atlantic Meridional Overturning Circulation; 3) An increase in anthropogenic sulphur dioxide emissions. Determining the relative importance of these factors is a key area for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact on the dynamics of the stratosphere of three approaches to geoengineering by solar radiation management is investigated using idealized simulations of a global climate model. The approaches are geoengineering with sulfate aerosols, titania aerosols, and reduction in total solar irradiance (representing mirrors placed in space). If it were possible to use stratospheric aerosols to counterbalance the surface warming produced by a quadrupling of atmospheric carbon dioxide concentrations, tropical lower stratospheric radiative heating would drive a thermal wind response which would intensify the stratospheric polar vortices. In the Northern Hemisphere this intensification results in strong dynamical cooling of the polar stratosphere. Northern Hemisphere stratospheric sudden warming events become rare (one and two in 65 years for sulfate and titania, respectively). The intensification of the polar vortices results in a poleward shift of the tropospheric midlatitude jets in winter. The aerosol radiative heating enhances the tropical upwelling in the lower stratosphere, influencing the strength of the Brewer-Dobson circulation. In contrast, solar dimming does not produce heating of the tropical lower stratosphere, and so there is little intensification of the polar vortex and no enhanced tropical upwelling. The dynamical response to titania aerosol is qualitatively similar to the response to sulfate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building roofs play a very important role in the energy balance of buildings, especially in summer, when they are hit by a rather high solar irradiance. Depending on the type of finishing layer, roofs can absorb a great amount of heat and reach quite high temperatures on their outermost surface, which determines significant room overheating. However, the use of highly reflective cool materials can help to maintain low outer surface temperatures; this practice may improve indoor thermal comfort and reduce the cooling energy need during the hot season.This technology is currently well known and widely used in the USA, while receiving increasing attention in Europe. In order to investigate the effectiveness of cool roofs as a passive strategy for passive cooling in moderately hot climates, this paper presents the numerical results of a case study based on the dynamic thermal analysis of an existing office building in Catania (southern Italy, Mediterranean area). The results show how the application of a cool paint on the roof can enhance the thermal comfort of the occupants by reducing the operative temperatures of the rooms and to reduce the overall energy needs of the building for space heating and cooling.